
A First Look at Instant Service Consumption with Quick Apps on Mobile Devices

Yi Liu1, Enze Xu1, Yun Ma2, and ∗Xuanzhe Liu1,3

1Key Lab of High-Confidence Software Technology (Peking University), Ministry of Education, Beijing, China
2Tsinghua University, Beijing, China

3Peking University Information Technology Institute, Tianjin Binhai, China

Email: 1{liuyi14, xez, liuxuanzhe}@pku.edu.cn, 2yunma@tsinghua.edu.cn

Abstract—Mobile app ecosystem has gained giant success in
providing services on mobile devices to facilitate almost all as-
pects in our daily life. However, the whole-package installation
and dramatically increasing package size are now preventing
users from trying more apps. To address the issue, many
lightweight frameworks have emerged, enabling to provide the
experience of instant service consumption where apps are of
small size and no installation is needed to consuming services
provided by the apps. In this paper, we conduct the first em-
pirical study on instant service consumption on mobile devices.
We focus on one of the most popular frameworks, quick apps,
which are proposed and supported by nine mainstream mobile
phone manufacturers in China. Quick apps are implemented
with Web-based technologies, and run as native apps without
the need of installation. We find that quick apps have much
smaller size and only provide a limited set of services compared
to their corresponding native apps. Then, we characterize the
performance differences between quick apps and native apps in
terms of launching time, data drain, and network connections,
when the two kinds of apps provide the same services. Our
observations reveal that quick apps perform better than native
apps thanks to its much smaller size and less functionalities in
a single page. Finally, we propose a machine learning based
approach to helping developers construct the quick app from
an existing native app.

Keywords-∗Instant Service Consumption; Quick App; Per-
formance; Web Services;

I. INTRODUCTION

With the prevalence of mobile devices like smartphones

and tablets, mobile apps have seen widespread adoption and

become the dominant consumers of Web services. A recent

survey [20] reveals that both the leading app stores including

Google Play and App Store have more than two million

apps and contribute billions of downloads in 2017. Mobile

apps are projected to generate 188.9 billion U.S. dollars in

revenues in 2020.

Developers prefer to add new features to serve and attract

users. However, increasing features (such as more SDKs,

higher resolution images, more functionalities, etc.) result in

larger app size. According to a report from Google Play [19],

the average app size has quintupled since 2012. Although

smart devices have more storage space than ever, user’ high-

quality photos, videos and other media files are occupying

∗corresponding author: liuxuanzhe@pku.edu.cn

more and more space, which means the available space on

devices is gradually tightening. Meanwhile, larger apps cost

more time to download and even may result in sluggish

responsiveness. A recent study [17] reveals that a full quarter

of users delete an app simply because they need to free

storage space on their devices. Meanwhile, the increasing

size and whole-package installation negatively affect users’

enthusiasm on trying new apps. Most apps fail to win the

users’ favor and lose the opportunity of success.
To address the issue, more and more service providers

try to customize their apps with many newly-proposed

instant-service frameworks to enhance the experience of

accessing services. Google has announced instant apps [10]

in 2016, which allow users try apps without installation.

Instant apps are developed as native apps without additional

skills, but have a variety of limitations. For example, they

cannot use background services or notifications. Meanwhile,

users have to download the full-size app once users need

unsupported functionalities in the instant app. WeChat has

been equipped with its mini program platform [21], which

works in a similar way. Mini programs are essentially

implemented as Web apps with some customizable features

that are thus accessed via hyperlinks from the app, and may

suffer from worse user experience than native apps. In 2018,

Huawei, Xiaomi, OnePlus and other six top mobile phone

manufacturers in China jointly launched a unified standard

called Quick Apps. Quick apps are so small that users

can directly start them within just a few seconds without

installation. Quick apps have the pros of both Web apps

(e.g. mini programs) and native apps, which can be easily

developed with Web-based technologies, but run as native

apps thanks to the underlying system-level support.
In order to investigate how service providers customize

their apps to provide experience of instant service con-

sumption, we conduct a comprehensive empirical study to

characterize quick apps and analyze performance difference

between quick apps and native apps. More specifically, this

paper tries to answer the following three research questions:

• RQ1: How do service providers leverage quick
apps to provide instant service consumption? The

ecosystem of quick apps is so young, and users have

no knowledge about them. We first collect quick apps as

328

2019 IEEE International Conference on Web Services (ICWS)

978-1-7281-2717-0/19/$31.00 ©2019 IEEE
DOI 10.1109/ICWS.2019.00061

Authorized licensed use limited to: William & Mary. Downloaded on April 16,2024 at 12:41:38 UTC from IEEE Xplore. Restrictions apply.

many as possible to give users an intuitional knowledge

of these apps.

• RQ2: Are quick apps really quick enough to beat the
native apps? We conduct some experiments to collect

the runtime information of both native apps and quick

apps to check if quick apps really perform better. We

find that quick apps indeed can save network traffic and

launching time.

• RQ3: How should developers transform an existing
native app into a quick app? Based on our analysis,

the ecosystem of quick apps is a rising star. However,

most developers have no experience to construct a quick

app. It is useful to provide an approach to helping

developers to select pages from the existing native app

to construct a quick app.

We collect all 297 quick apps provided by Huawei App

Store 2, of which 168 quick apps have corresponding native

apps. In our experiment, we use two smartphones of the

same model to run the native app and the quick app

simultaneously in the same environment, and explore how

they perform when visiting the same page. We use a proxy

between the Web service providers and mobile devices to

capture the HTTP and HTTPS traffic for further analysis.

Meanwhile, we also record the loading time of both the

native app and quick app when visiting the same page.

In order to determine whether a page of a native app

should be transformed into a quick-app version, we have

manually labeled hundreds of pages, extracted 22 features

for each selected page, and designed a machine learning

based approach. Our approach can achieve 84% of precision,

92% of recall, and 88% of F-measure, which is promising

for real usage.

The remainder of this paper is organized as follows.

Section II introduces some basic knowledge about quick

apps. Section III introduces the measurement methodology

and how we conduct our experiments. Section IV presents

the results and analysis of our study. Section V presents

related work, and Section VI concludes this paper.

II. BACKGROUND

In this section, we give some background knowledge

about quick apps.

In early 2018, nine top Chinese smartphones makers,

including Huawei, Xiaomi, OnePlus, etc., worked together

to launch a unified standard called quick app [1], aiming

to empower developers through standardization. Users can

directly access these new apps without installation.

Figure 1 shows the architecture of the quick app plat-

form. Developers can develop quick apps with front-end

framework and Web-based technologies, which is easy and

efficient. Developers can specify all pages in a manifest file,

2Huawei App Store is the official app store like Google Play for Huawei
devices

Figure 1: The Architecture of Quick Apps

and construct each page with pre-defined UI components

and APIs.

The quick app engine applies virtual DOM technology [7]

to improve the performance of UI updating. In fact, the

render engine and JavaScript engine will map the virtual

DOM of a running quick app to native components of the

Android system. Such technology enables quick apps to

perform much better than pure Web apps, and users even

feel as they are interacting with native apps. Meanwhile, the

quick app engine is rooted in system, which can realize deep

integration with GPU/NPU to get better performance than

other cross-platform frameworks of the application layer [8].

The quick app engine also encapsulates a lot of system

services and third-party services so that quick apps can

access most services to alleviate the gap between quick apps

and native apps. It is worth to mention that each page of a

quick app can be accessed via a deep link [23][16], which

facilitates users to access services of a quick app and makes

it possible to assemble various services with mashup on the

mobile platform [16].

III. MEASUREMENT METHODOLOGY

The quick app ecosystem is a rising star to benefit both

developers and end users. Developers can easily develop

a “light” app to low the threshold for access. Meanwhile,

users can try a new app without installation, and enjoy the

competitive user experience as the native app. We collect

the basic info and usage data of quick apps from the app

store, and proactively check if quick apps can achieve the

desired effect as they advocate.

A. Data Set

We choose Huawei App Store to get the published quick

apps, since it holds the most number of quick apps and

provides detailed description of each quick app, such as

download number, ratings, etc. Huawei App Store has an

entry to visit all quick apps, and can also get quick apps

329

Authorized licensed use limited to: William & Mary. Downloaded on April 16,2024 at 12:41:38 UTC from IEEE Xplore. Restrictions apply.

Table I: Collected Quick Apps

Category Quick App # Ratio

Tools 64 21.55%

News & Reading 35 11.78%

Lifestyle 30 10.10%

Shopping 29 9.76%

Music & Audio 25 8.42%

Education 16 5.39%

Travel & Local 15 5.05%

Finance 13 4.38%

Game 13 4.38%

Maps & Navigation 12 4.04%

Sports & Health 12 4.04%

Child 11 3.70%

Business 7 2.36%

Communication 5 1.68%

Food 4 1.35%

Auto & Vehicles 3 1.01%

Personalization & Theme 2 0.67%

Photography 1 0.34%

by searching with the keyword “quick app”. We traverse all

quick apps from these two entries, and get 297 quick apps

in total 3.

We then classify these quick apps into the 18 app cate-

gories in Huawei App Store based on tags of quick apps and

our domain knowledge. Table I shows the number of quick

apps in each category. These quick apps cover all the 18

app categories in Huawei App Store, including tools, news

& reading, shopping, etc. In other words, users can satisfy

their most daily requirements with quick apps instead of

native apps. The category of tools contains the most number

of quick apps. Among these 297 quick apps, 168 (56.57%)

have corresponding native apps. Then, we crawl all related

information of these quick apps and native apps, including

their description, ratings, installation packages, download

counts, etc.

For those apps that have both a native app and the

corresponding quick app, we manually select some pages

with same functionalities from both versions. We launch

these pages to record loading time, snapshots of pages, and

runtime page structure (XML format like HTML file of a

Web page, which describes each component and its detail

info, including type, position, size, etc.). We also record

the network traces including the number of connections,

response time, traffic data drain, etc., when visiting pages.

B. The Measurement Testbed

In this part, we introduce the infrastructural platforms

used during data collection, and how we conduct our ex-

periments.

We use Nexus 6 (3GB RAM, 32GB ROM, Quad-core 2.7

GHz) smartphone running Android 7.1.1 as our test devices.

3We collected these quick apps on December 5, 2018

Figure 2: The work flow of data collection and analysis

We deploy native apps and quick apps on them, respectively,

and open the corresponding pages under the same experi-

mental condition. The Android devices are rooted so that we

could prevent other apps from connecting network so as to

reduce noise. Both smartphones connect to the same Wi-Fi

to keep the same network condition. We install the runtime

support environment of quick apps on one smartphone to

run quick apps, and install the native app on the other one.

Meanwhile, we set a proxy between the providers of Web

services and smartphones with Charles [4] to intercept all

HTTP and HTTPS network traces for further analysis of

how quick apps and native apps consume Web services.

Figure 2 shows the work flow of how we conduct our

experiments. There are three key components to collect and

analyze data:

• Controller. Controller is responsive for automating the

data collection processes. We use android debug bridge

(ADB) to automate operations on native apps and

quick apps. Meanwhile, controller will send commands

to start/stop recording of the network requests with

Charles proxy when apps are running.

• Collector. Collector is responsive for collecting runtime

info and network traces when running quick apps and

native apps. The runtime info includes loading time

when visiting a page, a snapshot of current page, and

page structure. The page structure is exported as an

XML file like a HTML file of Web pages, in which

each node describes the component type (e.g. TextView

or ImageView), size, position, etc. Meanwhile, the

collector will send a command to the Charles proxy

to save these recorded network traces once the current

test finished.

• Analyzer. The analyzer is responsive for filtering and

analyzing collected data. First, we filter out those

abnormal data. For example, some quick apps throw

exceptions and exit. Then, the analyzer will conduct

some analysis to compare the differences between na-

tive apps and quick apps. We will detailedly discuss

these results later.

C. Definition

In order to better describe our study, we define some terms

as following:

330

Authorized licensed use limited to: William & Mary. Downloaded on April 16,2024 at 12:41:38 UTC from IEEE Xplore. Restrictions apply.

• Component. A user interface UI of a native app

or a quick app consists of several components,

and each component has a set of attributes, for-

mally, UI = {comp1, comp2, ..., compn}, compi =
{atti,1, atti,2, ..., atti,k}. These attributes include com-

ponent type, size, position, content, status, etc.

• Feature. “Text content” usually describes or implies

functional information of a component [5]. We use texts

appeared in a page to represent its features. We regard

the text content of a component as a feature as if it

satisfies: 1) text labels are immutable; 2) the length of

text is no more than 4 (developers always use short

phrase to represent a functionality [14]).

• Page. We take the set of components in an Android

activity as a page at runtime. Actually, each page

defined in a quick app will be hosted and displayed in

a pre-defined activity by quick app engine at runtime.

We can export the page as an XML file, in which each

element corresponds to a component. The rendering

result of a page can be saved as a snapshot (a png

format image).

• Trace. A trace is a sequence of HTTP/HTTPS requests

and responses of Web services when we visit a page

with a native app or a quick app.

• Number of connections. The number of connections is

the number of pairs of requests and respective responses

in a trace. It can reflect how many services a page

integrate.

• Traffic volume. The traffic volume means the total

network traffic of a trace, including the bytes sent and

bytes received.

• Launching Time. The launching time is the time spent

on launching a native app or a quick app. It reflects the

responsiveness of an app.

IV. DATA ANALYSIS

In this section, we analyze the collected data to answer

three research questions, respectively.

A. The Quick Apps Ecosystem

In this part, we give a statistical analysis of collected data

to give users a straightforward perception of quick apps.

Figure 3 shows the distribution of package size of quick

apps and native apps with a box plot. In order to better

exhibit, sizes are in logarithmic scale. We can find that

quick apps have a much smaller size than native apps. In

the median case, the size of a quick app is only 274.38 KB,

but the size of a native app is 27,235 KB. The size of a

native app is roughly 100 times larger than the size of a

native app in the media case. Meanwhile, the size of 80%

of quick apps we collected is no more than 500 KB, and

the largest size of collected quick apps is only 1,736 KB.

To make a comparison with Web apps, a recent study of

httparchive.org [3] reports that the median size of mobile

Figure 3: Package Size of Quick Apps and Native Apps

Figure 4: # Page of Quick Apps and Native Apps

Web pages in 2018 was 1,285 KB (4.68 times larger than

a quick app). In other words, a quick app is much smaller

than the mobile Web page and native app, and users can

quickly access a quick app for the first time.

Figure 4 shows the cumulative distribution of page num-

ber of both quick apps and native apps. We extract the

pages from the manifest files in installation packages, which

contain predefined pages in both quick apps (named ‘Page’)

and native apps (named ‘Activity’). We can find that quick

apps contain much less pages than native apps. In the median

case, the quick app contains only 9 pages, while the native

app contains 147 pages. The quick app has 82 pages at most,

while the native app has 1,056 pages at most. Less pages can

reduce the package size effectively so that users can access

the quick app as quickly as possible, and occupy less local

storage space. However, users have to download the full-size

app if they desired features are not included in the small

set of pages of a quick app. Although developers can add

more features in the quick app with plenty of development

efforts, it will increase the download size and affect the

instant experience.

Figure 5 shows the cumulative distribution of ratings of

both quick apps and native apps. In Huawei App Store, users

can give a rating for an app from 1 to 5. In the median

case, the score of the quick app is 2.5, but the score of the

native app is 3.5. We manually scan the comments of quick

apps, and find that users mostly complain the compatibility

and unresponsiveness of quick apps. Figure 6 shows the

cumulative distribution of growth rate of quick apps within

331

Authorized licensed use limited to: William & Mary. Downloaded on April 16,2024 at 12:41:38 UTC from IEEE Xplore. Restrictions apply.

Figure 5: Ratings of Quick Apps and Native Apps

Figure 6: The Growth Rate of Quick Apps Within One

Month

one month. We find that 40% of quick apps have a growth

rate over 20%, which shows the great vitality of the new

ecosystem. Although the new ecosystem is really young and

has some shortcomings, quick apps can win more and more

users since their small sizes and high performance once the

robustness of system-level support is guaranteed.

B. Performance of Quick Apps

Following the experiment setup described in the previous

section, this section focuses on the runtime performance

evaluation of native apps and quick apps. We focus on

performance of consuming Web services and responsiveness

when launching native apps and quick apps. We wonder if

quick apps and native apps have different behavior when

consuming Web services, and if quick apps really perform

better than native apps.

Figure 7 shows the distribution of traffic size when

launching quick apps and native apps, respectively. In the

median case, a quick app only downloads 131.91 KB data,

but a native app downloads 1812.78 KB data. The latter one

is about 13.74 times larger than the former one.

Figure 8 shows the distribution of numbers of pairs of

requests and responses when launching quick apps and

native apps, respectively. We can see that a native app

initiates much more requests, which is about 7.5 times more

than a quick app in the median case (75 requests & responses

for a native app VS 10 requests & responses for a quick

app). We also find that Web services consumed by both

Figure 7: The Traffic Size of Launching Quick Apps and

Native Apps

Figure 8: The Request # of Launching Quick Apps and

Native Apps

native apps and quick apps are all RESTful-fashion, which

is lightweight and flexible. Most requests and responses

are based on HTTP/HTTPS protocol, but we find that

some native apps apply WebSocket protocol [22], which

can facilitate real-time data transfer from and to the server

with lower overheads. Meanwhile, we also find that both

native apps and quick apps have applied HTTP/2 protocol

to improve their performance of loading data.

We also find that developers often use different URLs of

RESTful Web services on native apps and quick apps, given

the same functionality. In fact, a quick app displays less

content than the corresponding native app, and the redundant

response of a Web service will [15] waste users’ limited data

plan. It is better to provide a succinct Web service for quick

apps.

The quick app mainly sends requests to fetch displayed

contents and images, but the native app sends extra requests

to check for updating, prefetch ads, upload data for analysis,

and so on. Meanwhile, the homepage of a native app trends

to display more contents, which may result in more requests.

Figure 9 also shows the distribution of numbers of con-

nected domains when launching native apps and quick apps,

respectively. We can find that native apps connect much

more domains. In the median case, a native app connects

12 domains, but a quick app connects only 3 domains.

In other words, the native app integrates more third-party

Web services, but the quick app is concentrated on its own

332

Authorized licensed use limited to: William & Mary. Downloaded on April 16,2024 at 12:41:38 UTC from IEEE Xplore. Restrictions apply.

Figure 9: The Connected Domain # of Launching Quick

Apps and Native Apps

Figure 10: The Component # in Homepage of Quick Apps

and Native Apps

contents.

Figure 10 shows the distribution of number of nodes in

homepages for quick apps and native apps, respectively.

Both quick apps and native apps render their page like DOM

tree of a Web page, and we can get the rendering result

via ADB tool. We find that most quick apps contain less

nodes compared to their corresponding native apps, which

means native apps have more complicated page structure and

display more contents. In the median case, a quick app has

31 components and a native app has 47 components.

Words on the UI components can describe the features

well [5], we also compare the difference of features between

the native app and quick app as shown in Figure 11. In the

median case, a quick app has only 9 features in its page, but

a native app has 14 features in its page. Developers prefer

to put less features in quick apps so that the app can fetch

content and display them as quick as possible to optimize

users’ experience.

Figure 12 shows the distribution of launching time of

quick apps and native apps, respectively. In the median case,

we need to wait 571 ms to open a quick app, but 2,255 ms to

open a native app. We find that most native apps cost much

more time to launch, which is about 3.9 times longer than

quick apps in the median case. In fact, native apps often

initiate many third-party libraries at launching time, which

will occupy more memory and increase the time spent on

Figure 11: The Feature # in Homepage of Quick Apps and

Native Apps

Figure 12: The Launching Time of Quick Apps and Native

Apps

looking for classes that are randomly distributed in dex files

(bytecode of Android apps). For those native apps that have

less launching time, we find that they are clean with only a

few of third-party libraries and do not start many services

at launching time. Such finding tells us that we can also

efficiently optimize native apps by activating less launching

processes.

C. Constructing Quick Apps from Native Apps

In our previous analysis, we have an intuitive cognition

that quick apps are more concise and display less content.

We wonder how should developers choose pages to construct

a quick app from an existing native app. We manually select

300 of pages from quick apps and corresponding native

apps, and 50 native pages that are not implemented in the

corresponding quick apps. These pages cover a wide variety

of areas, including news, social network, shopping, etc.

We propose a machine learning based approach to help

developers to choose pages from a native app to implement

the quick app. We apply the Support Vector Machine (SVM)

classifier model to predict if a page should be migrated to

the quick app. We have evaluated a number of alternative

modeling techniques, including regression [26], K-Nearest

neighbor [25], decision tree [24], etc. We chose SVM

because it gives the best performance, and can model both

linear and non-linear problems.

333

Authorized licensed use limited to: William & Mary. Downloaded on April 16,2024 at 12:41:38 UTC from IEEE Xplore. Restrictions apply.

Table II: Selected Features

Component Tag TextView, ImageView, ListView, Recy-
clerView, GridView, EditText, Button, Im-
ageButton,WebView,CheckBox

Component Attr checkable, clickable, focusable, long-
clickable, scrollable, content-desc, resource-
id

Activity Info exported, deep-linking-enabled

Other Info Page tree depth, #Page components, #Page
features

Our predictor is based on a number of features extracted

from native pages, including runtime page structure, feature

number, activity information. These are chosen based on our

intuitions of what factors can affect developers’ choice when

constructing quick apps. The runtime page structure (e.g.

the number of UI components, depth of the page tree, and

component tags) determines the complexity and layout of the

page; The feature number represents the actual functionali-

ties in the page. Developers may prefer to transform concise

pages. The activity information (e.g. whether is exported and

can be visited directly via deep linking [23]) can reflect the

importance of a page. Such deep-linking-enabled pages can

be widely accessed, and are always the key pages in an app.

We can get hundreds of raw features to train our proposed

model from native pages. We try to reduce the number of

features by removing features that have few or redundant

information. For example, we have removed features of

component tags or attributes that have little impact on page

selections such as LinearLayout, RelativeLayout, etc. We

have also constructed a correlation coefficient matrix to

quantify the correlation among features to remove redundant

features. We removed features that have a correlation coef-

ficient greater than a threshold (+/- 0.8) to any of chosen

features. For instance, the component attributes checkable
and checked often appear as pairs. Finally, we get 22

representative features in total as shown in table II.

To perform the prediction task, we randomly divide the

data set into two subsets, i.e., a training set with 297 pages, a

test set with 53 pages. We evaluate our approach with three

metrics, including precision, recall, and F-measure. We can

achieve 84% of precision, 92% of recall, and 88% of F-

measure, which is promising to help developers to determine

wether migrate a page of the existing native app to the quick

app.

D. Threats to Validity

Limited dataset. Quick app platform is really young ecosys-

tem, so we can only get limited set of quick apps. However,

we are the first to have a deep analysis on how quick apps

perform, and the differences compared to native apps. We

find that quick apps benefit from their concise page structure

and less service requests. Meanwhile, our proposed approach

demonstrates the potentiality of mining existing repository

of quick apps and native apps to help developers to construct

a new quick app.

Consistency of Functionalities. In order to make a fair

comparison between a native app and its corresponding

quick app, we select corresponding pages with same func-

tionalities. However, it is impossible to get two pages with

exactly same functionalities. There exists some differences

between the corresponding pages more or less. Actually,

quick apps benefit from less functionalities in a single page,

hence they can provide better performance.

E. Discussion

Privacy concern. We find that users are not aware of

permissions requested by a quick app unless they run them.

The Huawei App Store should provide such info as native

apps to give users a straightforward understanding of the

privacy risk before they try them.

Inspiration. Although we just analyze quick apps to under-

stand instant service consumption, our proposed methodol-

ogy and model can also directly apply to other customized

apps. We also plan to make a comprehensive comparison

among more customized apps, including mini programs,

Web apps, quick apps, etc. Meanwhile, we can further

dig out more knowledge by mining existing repositories of

various customized apps.

V. RELATED WORK

Platforms for Instant Service Integration. There also

exist other platforms to help service providers to integrate

instant service, such as React Native [8] from Facebook,

Weex [2] from Alibaba, Mini Program [21] from Tencent.

All of them enable developers to easily construct an app

with Web-based technologies. However, mini programs are

actually Web apps, and have limited capacity and worse

performance than native apps. The former two platforms also

apply native rendering, but are integrated in the application

layer. Nevertheless, the quick app engine is integrated at

system-level, and can take full advantages of low-level

capacity of hardwares and system.

Cross-platform Analysis. Existing studies focus on com-

paring differences between Web apps and native apps. Liu

et al. [15] analyzed the performance of consuming same

Web services using Web apps and native apps, respectively.

Lee et al. [12], Leung et al. [13], and Papadopoulos et

al. [18] focused on comparing the privacy implications of

consuming Web services with Web apps and native apps.

We focus on comparing performance analysis between quick

apps and native apps. There also exist some work focused on

identifying cross-platform features for Web apps [6][11][28]

and for native apps [9][27]. Choudhary et al. [6] identified

the difference of features by analyzing the network traces,

but others focused on the visual and structural similarity.

In this paper, we focus on comparing the features between

quick apps and native apps, and we get features by extracting

text contents from pages.

334

Authorized licensed use limited to: William & Mary. Downloaded on April 16,2024 at 12:41:38 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSION

In this paper, we conduct a comprehensive empirical

study to understand instant service consumption on a newly-

proposed platform called quick apps. We reveal the char-

acteristics of how quick apps consume Web services and

how they perform compared with their corresponding native

apps. Then, we propose a machine-learning based approach

to helping developers to transform a native app into a quick

app with high precision (84%).

ACKNOWLEDGEMENTS

This work was supported by the National Key Re-

search and Development Program under Grant No.

2018YFB1004403 and Peking University Information Tech-

nology Institute, Tianjin Binhai, China.

REFERENCES

[1] Apps solidify leadership six years into the mobile
revolution. http://www.flurry.com/bid/109749/
Apps-Solidify-Leadership-Six-Years-into-the-Mobile-Revol
ution# .VMdCU7H9PeM/.

[2] alibaba. A framework for building high-performance mobile
applications with a modern web development experience.
https://weex.incubator.apache.org//, 2018.

[3] H. Archive. The http archive tracks how the web is built.
http://httparchive.org/, 2018.

[4] Charles. Web debugging proxy application. https://www.
charlesproxy.com/, 2018.

[5] X. Chen, Q. Zou, B. Fan, Z. Zheng, and X. Luo. Recommend-
ing software features for mobile applications based on user
interface comparison. In Requirements Engineering, pages
1–15. Springer, 2018.

[6] S. R. Choudhary, M. R. Prasad, and A. Orso. X-PERT: accu-
rate identification of cross-browser issues in web applications.
In 35th International Conference on Software Engineering,
ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, pages
702–711, 2013.

[7] V. Dom. Virtual dom. https://en.wikipedia.org/wiki/React
(JavaScript library)#Virtual DOM, 2018.

[8] Facebook. Build native mobile apps using javascript and
react. https://facebook.github.io/react-native/, 2018.

[9] M. Fazzini and A. Orso. Automated cross-platform inconsis-
tency detection for mobile apps. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software
Engineering, ASE 2017, Urbana, IL, USA, October 30 -
November 03, 2017, pages 308–318, 2017.

[10] Google. Native android apps, without the installation. https:
//developer.android.com/topic/google-play-instant/, 2018.

[11] M. He, G. Wu, H. Tang, W. Chen, J. Wei, H. Zhong, and
T. Huang. X-check: A novel cross-browser testing service
based on record/replay. In IEEE International Conference on
Web Services, ICWS 2016, San Francisco, CA, USA, June 27
- July 2, 2016, pages 123–130, 2016.

[12] J. Lee, H. Kim, J. Park, I. Shin, and S. Son. Pride and
prejudice in progressive web apps: Abusing native app-like
features in web applications. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018, pages 1731–1746, 2018.

[13] C. Leung, J. Ren, D. R. Choffnes, and C. Wilson. Should you
use the app for that?: Comparing the privacy implications of
app- and web-based online services. In Proceedings of the
2016 ACM on Internet Measurement Conference, IMC 2016,
Santa Monica, CA, USA, November 14-16, 2016, pages 365–
372, 2016.

[14] T. J. Li and O. Riva. Kite: Building conversational bots from
mobile apps. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services,
MobiSys 2018, Munich, Germany, June 10-15, 2018, pages
96–109, 2018.

[15] Y. Liu, X. Liu, Y. Ma, Y. Liu, Z. Zheng, G. Huang, and
M. B. Blake. Characterizing restful web services usage on
smartphones: A tale of native apps and web apps. In 2015
IEEE International Conference on Web Services, ICWS 2015,
New York, NY, USA, June 27 - July 2, 2015, pages 337–344,
2015.

[16] Y. Ma, Z. Hu, Y. Liu, T. Xie, and X. Liu. Aladdin: Automating
release of deep-link apis on android. In Proceedings of the
2018 World Wide Web Conference on World Wide Web, WWW
2018, Lyon, France, April 23-27, 2018, pages 1469–1478,
2018.

[17] T. Manifest. Mobile app usage statistics
2018. https://themanifest.com/app-development/
mobile-app-usage-statistics-2018, 2018.

[18] E. P. Papadopoulos, M. Diamantaris, P. Papadopoulos, T. Pet-
sas, S. Ioannidis, and E. P. Markatos. The long-standing pri-
vacy debate: Mobile websites vs mobile apps. In Proceedings
of the 26th International Conference on World Wide Web,
WWW 2017, Perth, Australia, April 3-7, 2017, pages 153–
162, 2017.

[19] G. Play. Shrinking apks, growing in-
stalls. https://medium.com/googleplaydev/
shrinking-apks-growing-installs-5d3fcba23ce2, 2017.

[20] Statista. Number of apps available in leading app stores as of
3rd quarter 2018. https://www.statista.com/statistics/276623/
number-of-apps-available-in-leading-app-stores/, 2018.

[21] WeChat. The mini programs provided by wechat. http://
tencent.com/en-us/articles/15000551479986174.pdf, 2016.

[22] Wikipedia. Websocket. https://en.wikipedia.org/wiki/
WebSocket/, 2011.

[23] Wikipedia. Mobile deep linking. https://en.wikipedia.org/
wiki/Mobile deep linking/, 2017.

[24] Wikipedia. Decision tree. https://en.wikipedia.org/wiki/
Decision tree, 2019.

[25] Wikipedia. K-means clustering. https://en.wikipedia.org/wiki/
K-means clustering, 2019.

[26] Wikipedia. Linear regression. https://en.wikipedia.org/wiki/
Linear regression, 2019.

[27] G. Wu, Y. Cao, W. Chen, J. Wei, H. Zhong, and T. Huang.
Appcheck: A crowdsourced testing service for android ap-
plications. In 2017 IEEE International Conference on Web
Services, ICWS 2017, Honolulu, HI, USA, June 25-30, 2017,
pages 253–260, 2017.

[28] Z. Xu and J. Miller. Cross-browser differences detection
based on an empirical metric for web page visual similarity.
ACM Trans. Internet Techn., 18(3):34:1–34:23, 2018.

335

Authorized licensed use limited to: William & Mary. Downloaded on April 16,2024 at 12:41:38 UTC from IEEE Xplore. Restrictions apply.

