
Adaptive Request Scheduling for Device Cloud

Han Dong1, Enze Xu2, ∗Xiang Jing1, Huaqian Cai2, and Gang Huang2

1School of Software and Microeletronics, Peking University, Beijing, China
2School of Electronics Engineering and Computer Science, Peking University, Beijing, China

Email: 1,2{danieldong, xez, jingxiang, caihq, hg}@pku.edu.cn

Abstract—Nowadays, more and more cloud testing platforms
provide enterprise developers with solutions for cloud device
debugging and automatic testing. It is a great challenge for
these cloud platforms to schedule the arriving requests to
run on the specific smart device resources in real-time and
efficiently. The traditional scheduling algorithm is difficult to
adapt to the application interface call request with a vast differ-
ence in volume and behaviour ability. To solve this problem, we
integrate these smart devices into a device cloud and propose a
measurement method of the service capability of a single device
in the group. Then we build an adaptive scheduling algorithm
model according to the characteristics of the serviceability of
a single device to improve the scheduling efficiency of the
group. Practice shows that the adaptive scheduling algorithm
can effectively control the network traffic. Finally, through the
analysis and optimization, we get the method of obtaining the
optimal parameter combination in the algorithm.

Keywords-*adaptive scheduling; smart devices; traffic con-
trol; device cloud; competitive counting;

I. INTRODUCTION

The use of smartphone has substantially increased in the

past decade. It is estimated that by the end of 2020, the

number of smartphone users in the world will be 6.1 billion

[1]. In the era of smart device Internet, more and more

cloud testing platforms provide enterprise developers with

solutions for smart cloud device debugging and automatic

testing [2].

It is a great challenge for these cloud platforms to

schedule the arriving requests to run on the specific smart

device resources in real-time and efficiently. The traditional

scheduling algorithm is difficult to adapt to the application

interface call request with a vast difference in volume and

behaviour ability.

In previous studies, the adaptive scheduling algorithm is

mainly used in the work of network signal and transmis-

sion. For example, the dynamical adjusting of the inter-

frame space (IFS) is based on differences between required

transmission delay and estimated experienced transmission

delay [3]; The adaptive sampling rate scheduling (ASRS)

methodology maintains the transmitted measurement sig-

nals’ fidelity [4], provides a maximum level of adaptabil-

ity accommodating packet losses and changes in network

topology while expanding periodic nature of the sensor

*corresponding author: jingxiang@pku.edu.cn

node transmissions [5]. These service scheduling algorithms

rarely pay attention to the enormous service performance

differences before different service types, mainly taking the

quantitative indicators of actual traffic as the adaptive data

reference.

If there is a smart device scheduling algorithm that can

dynamically balance the load of each device in the device

group, such scheduling algorithm can greatly improve the

overall scheduling efficiency of a device group. The appli-

cation of this algorithm in cloud testing platforms also has

significant economic value.

A commonly used Android device testing method is

implemented by running the virtual machine through Docker

[6] installed on the Linux operating system. But in our

experiment, we find that the stability of Android system

in Docker is much worse than that installed directly on

smart devices. So in this paper, we directly use the physical

Android system on smart devices for testing.

Our previous experiment concludes that with the increase

of the arrival rate of call requests, the percentage of suc-

cessfully responding to and running the same application

request on a single device match a model of “idle-saturation-

overload”. There is a fixed optimal load rate [7] for the

specified device and application request. Under this loading

rate, the throughput per unit time of the devices is the largest,

and the service performance is the best. However, in a real

application scenario, it is difficult for us to calculate the

“optimal load rate” of an unknown application request in

advance, because the calculation of this value itself requires

a large number of tests to calibrate, which is difficult for a

busy platform server to accept.

We design an adaptive scheduling algorithm to solve this

problem. We integrate these smart devices into a device

cloud and propose a measurement method of the service

capability of a single device in the group. Then we build

an adaptive scheduling algorithm model according to the

characteristics of the serviceability of a single device to im-

prove the scheduling efficiency of the group. Our experiment

shows the adaptive scheduling algorithm can effectively

control the network traffic and help the task centre of the

group to decide the future task scheduling according to the

success of each application request. Finally, through the

analysis and optimization, we get the method of obtaining

394

2020 IEEE International Conference on Services Computing (SCC)

2474-2473/20/$31.00 ©2020 IEEE
DOI 10.1109/SCC49832.2020.00058

Authorized licensed use limited to: William & Mary. Downloaded on April 16,2024 at 12:42:17 UTC from IEEE Xplore. Restrictions apply.

the optimal parameter combination in the algorithm.

II. BACKGROUND AND RELATED WORKS

In this section, we give some background knowledge

about the framework of behavioural reflection of Internet-

ware and the scheduling algorithm of the distributed system.

A. Framework of Behavioural Reflection of Internetware

Internetware is an abstract form of the software system

in the open, dynamic, and changeable environment of the

Internet [8]. It has the characteristics of autonomy, coop-

eration, responsiveness, evolution, and polymorphism [8],

[9]. Android applications are typical Networking software.

The “Framework of behavioural reflection of Internetware”

proposed by the Software Engineering Institute, Peking

University, can open the internal data of Android Appli-

cation in the form of a “behavioural reflection interface”

for external access [10]. Compared with the traditional data

open method, the Network Architecture Software Behaviour

Reflection Technology Framework has the following advan-

tages:

• Advantage 1. It applies to almost all Android apps

and does not need the source code of the app or the

assistance of the app developers.

• Advantage 2. The data obtained is completely consis-

tent with the data in the application program.

• Advantage 3. Real-time data within the app can be

obtained.

• Advantage 4. It does not affect the normal operation

of the app program, and the app also has no awareness

of data opening.

B. Scheduling Algorithm of The Distributed System

Distributed system [11] is a system which is composed of

components deployed in multiple networking devices and re-

alizes communication and cooperation between components

through message passing. The mechanism and strategy of

managing access of consumers to resources in a distributed

system are collectively referred to as the scheduling of a

distributed system [12]. The scheduling algorithms of the

distributed system can be classified according to different

standards [12]: static scheduling and dynamic scheduling,

centralized scheduling and distributed scheduling, optimal

scheduling, and sub-optimal scheduling, primary distri-

bution scheduling and dynamic redistribution scheduling,

load-balanced scheduling and non-load-balanced scheduling,

adaptive scheduling, and non-adaptive scheduling.

Due to the apparent difference between the device cloud

based on the framework of behavioural reflection of In-

ternetware and the general distributed system, the existing

distributed system scheduling algorithm is not suitable for

the device cloud.

Figure 1. Request Traffic of Single Device in the Device Cloud

III. MEASUREMENT OF SERVICE CAPABILITY

In this section, we measure the service capability of

different action reflective interfaces on a single device under

various request traffic.

A. Definition of Service Capability

The service capability of the classical data service group

is usually expressed by the response time, throughput, and

other indicators. The typical application scenario of the

device cloud is data batch processing, which is insensitive to

response time, so only the throughput needs to be considered

for the definition of service capability.

Figure 1 is a schematic diagram of the request traffic of

a single device in the device cloud. The number of requests

completed per unit time is the throughput of a single device.

Since the throughput of a single device is related to the

rate of request arrival, the service capability of a single

device can be defined as a function Fi (v), where i is the

behavioural reflection interface for request invocation, v is

the rate of request arrival (in times/seconds), and Fi (v) is

the rate of request completion (in times/seconds). The results

of function Fi (v) with different values of v can be measured

by experiments (see III.B).

B. Measuring Method

There are two steps to measure service capability:

Step 1: Control variables

• Hardware and software configuration of the device.

Measurements are made on the same manufacturer,

the same model, and the same Android version of the

device.

• Network environment. The device is connected to a

stable WiFi access point and measured only in non-peak

time.

Step 2: Measure the service capability function Fi (v) of

a single device (see III.A for definition)

A request to call interface i is sent to the device at rate v =
v0, and the rate w of request completion is measured. Repeat

several times and get the mean ω of w, then Fi (v0) = ω
Similarly, the results of Fi (v) with other values of v can

be measured. Because the operation of measuring a single

Fi (v) is time-consuming and the value range of v is large, if

v is not selected properly, the total measurement time will be

unbearable. To determine the overall trend, maximum value

and variation law near the maximum value of Fi (v) in a

395

Authorized licensed use limited to: William & Mary. Downloaded on April 16,2024 at 12:42:17 UTC from IEEE Xplore. Restrictions apply.

Table I
MEASURED BEHAVIOURAL REFLECTION INTERFACES

Application Interface Parameters

App 1 Search audio Keyword
App 2 Get new product list /
App 3 Search video Keyword
App 4 Search news Keyword
App 5 Search stock information Stock name or code
App 6 Search for preferential information Keyword
App 7 Get scenic spots recommendation City code

Figure 2. Measurement Results of Service Capability of Some Interfaces
of a Single Device (Overall Trend)

reasonable time, the following methods should be used to

select v:

• Firstly, v grows exponentially (e.g. v =
1, 2, 22, 23, . . . , 2k) to determine the overall trend

of Fi (v) and the interval where the maximum value is

located.

• Then, v linearly traverses the interval where the maxi-

mum value is located to determine the maximum value

of Fi (v) and the variation law of Fi (v) near the

maximum value.

C. Measurement Results of Partial Interfaces

In this subsection, we use the method described in III.B to

measure the service capability of some behavioural reflection

interfaces on a single device. The experimental equipment

is the “Changhong S07” mobile phone, and the Android

version is 6.0. We install BusyBox[13] (command-line tools

provided by BusyBox are required for some operations) and

Xposed Framework[14] (Xposed Framework is required for

target application to load behaviour reflection interface) on

these mobile phones. The selected interfaces come from

seven typical applications (see Table I).

Figure 2 is a measurement of v with exponential growth,

showing the overall trend of Fi (v) (as defined in III.A):

• With the increase of v, Fi (v) increases first and

then decreases, and finally approaches 0. The change

of Fi (v) accords with the typical process of “idle-

saturation-overload”.

• If v∗i = argmaxFi (v), then when v < v∗i (i.e. growth

stage), Fi (v) can be approximated by Fi (v) = v (gray

Figure 3. Measurement Results of Service Capability of Some Interfaces
of a Single Device (Near the Maximum)

Figure 4. Request Traffic of a Single Device in the Device Cloud

dotted line), indicating that the interface can provide

services more steadily before the requested traffic is

saturated.

• The maximum value of Fi (v) of different interfaces is

different and may vary greatly, which reflects the differ-

ence of service capability. For example, maxFi (v) < 5
for the “Search Preferential Information” interface of

“Meituan” application, while maxFi (v) > 100 for

the “Search Stock Information” interface of “Yimeng

Trader (Classic Edition)”. The difference between the

two is more than 20 times.

Figure 3 shows the measurement results when v linearly

traverses the interval where the maximum Fi (v) is located.

The meanings of abscissa, ordinate, and grey dashed lines

are the same as those in Figure 2.

D. Ideal Value under Traffic Control Conditions

From the measurement results of III.C, it can be inferred

that if some traffic control mechanism is used to reject some

requests when v is too large (see Figure 3), the rate of

accepting requests by the device v′ satisfies v′ ≤ v∗i (v∗i
is the v that maximizes the value of Fi (v), see III.C), the

service capability degradation caused by overload can be

avoided.

Define F ′
i (v) as the ideal value of Fi (v) under traffic

control conditions (the image of F ′
i (v) is shown in Figure

5):

F ′
i (v) =

{
Fi (v) , v < v∗i
Fi (v

∗
i) , v ≥ v∗i

(1)

When v < v∗i , Fi (v) can be approximately expressed

as Fi (v) = v (see III.C), so F ′
i (v) can be approximately

396

Authorized licensed use limited to: William & Mary. Downloaded on April 16,2024 at 12:42:17 UTC from IEEE Xplore. Restrictions apply.

Figure 5. Ideal Value of Partial Interface Service Capability of a Single
Device under Traffic Control (Overall Trend)

expressed as F ′′
i (v) (in IV.B we use this approximation):

F ′′
i (v) =

{
v, v < v∗i
Fi (v

∗
i) , v ≥ v∗i

(2)

IV. MODEL OF ADAPTIVE SCHEDULING

In this section, we establish an adaptive scheduling model

for the device cloud, which is based on the measurement of

the service capability of a single device in the last section.

A. Model Assumptions

The device cloud suitable for adaptive scheduling method

should satisfy the following assumptions:

• The group consists of n devices with the same hardware

and software configuration (manufacturers, models, An-

droid versions are all the same). (No. 1, 2, . . . , n).

• The network environment of the group is stable.

• m interfaces (No. 1, 2, . . . ,m) are deployed. The set of

device numbers for deployed interface i is Di.

• The service capability of the same interface on each

device is the same, expressed by the function Fi (v)
(defined as III.A).

• Different interfaces deployed on the same device do not

influence each other; that is, function Fi (v) has nothing

to do with other interfaces deployed on the same device.

The device cloud Q satisfying the above assumptions can

be represented by a 2m+ 2 tuple:

Q = (n,m,D1, D2, . . . , Dm, F1, F2 (v) , . . . , Fm (v)) (3)

B. Scheduling Objective
In III.A we define the service capability Fi (v) of a single

device. Similarly, the total service capability of the group

Q on interface i can be defined as a function GQ,i (v),
where v is the rate at which requests reach the group (in

times/seconds) and GQ,i (v) is the rate at which the group

completes requests (in times/seconds). The request rate as-

signed to device j by group gateway is vj (in times/seconds).

Then we get:

v =
∑
j∈Di

vj , GQ,i (v) =
∑
j∈Di

Fi (vj) (4)

F ′′
i (v) is an approximate representation of the ideal value

of Fi (v) under traffic control conditions (see III.D). It is

easy to prove that:

GQ,i (v) ≤ |Di|F ′′
i (

v

|Di|) (5)

That is, |Di|F ′′
i (

v

|Di|) is the upper limit of GQ,i (v)

for given |Di| and Fi (v). Define the scheduling efficiency

function HQ,i (v) of interface i on the group Q:

HQ,i (v) =
GQ,i (v)

|Di|F ′′
i (

v

|Di|)
, 0 < HQ,i (v) ≤ 1 (6)

Define the integrated scheduling efficiency function

HQ (v) of m interfaces on the group Q:

HQ (v) =
m∑m

i=1

1

HQ,i (v)

, 0 < HQ (v) ≤ 1 (7)

Group parameters (i.e. n,m,Di, Fi) and the scheduling

method can affect HQ (v). When group parameters remain

unchanged, HQ (v) reflects the performance of scheduling:

the larger HQ (v) is, the better the performance of schedul-

ing is. Therefore, this paper chooses maximizing HQ (v)
as the scheduling objective of the group. We measure and

calculate the HQ (v) with a method similar to III.B.

C. Optimization Method
Formula (7) shows that in order to improve HQ (v), it is

necessary to increase HQ,i (v). It can be seen from Formula

(5) and Formula (6) that to improve HQ,i (v), it is necessary

to make GQ,i (v) close to the upper limit, which is equivalent

to making Formula (5) approximately equal. The same sign

condition of Formula (5) is satisfied at the same time:⎧⎨
⎩
Fi (v) = F ′′

i (v)

vj =
v

|Di| , j ∈ Di
(8)

397

Authorized licensed use limited to: William & Mary. Downloaded on April 16,2024 at 12:42:17 UTC from IEEE Xplore. Restrictions apply.

Line 1 of Formula (8) requires the traffic of requests to be

controlled to ensure that the rate at which each device in Di

receives requests does not exceed the critical value v∗i (see

III.D); Line 2 of Formula (8) requires an average allocation

of request traffic so that each device in Di receives requests

at the same rate (i.e., the load is equal). The scheduling

method only needs to control and distribute the request

traffic properly, and to approximate satisfies Formula (8) to

make GQ,i (v) close to the upper limit, then HQ,i (v) close

to 1, and finally HQ (v) close to 1, to achieve the scheduling

goal of IV.B. Two schemes can approximate Formula (8)

satisfactorily:

• Sche 1. Continuously monitor the traffic to each device

to ensure that it does not exceed the critical value of

v∗i ; according to the principle of load balancing, priority

should be given to assigning requests to devices with

smaller traffic. This scheme is easy to understand, but

there are some difficult problems to solve:

– a. The critical value v∗i of different interfaces is

different, so it is impossible to measure the critical

value of all interfaces by experiment beforehand.

– b. When the request traffic to the group is heavy,

the traffic to each device is confronted with the

contradiction of low delay and high accuracy: high

accuracy requires higher data sampling frequency,

while this will increase the delay.

• Sche 2. Adaptively control traffic based on the exe-

cution result of the request (success or failure). This

scheme does not need to measure the critical value of

the interface v∗i , nor need to monitor the traffic to each

device explicitly, so it is feasible.

In this paper, we choose Sche 2. The rest of this section

and the next section introduce the scheme in detail.

D. Algorithm Framework

The key to adaptive scheduling algorithm is adaptive

traffic control (see IV.C). The implementation method is as

follows (the meaning of n,m,Di please see IV.A):

• Step 1. Maintain the receiving window matrix Wn×m,

in which element Wj,i is used to record the maximum

number of simultaneous calls to interface i on device

j. The initial value of Wj,i can be set to a smaller

integer, and Wj,i will be updated continuously during

the operation of the algorithm.

• Step 2. Maintain the current concurrency matrix Cn×m,

in which element Cj,i record the current concurrency

of interface i on device j (the number of requests being

processed). When the gateway forwards the request for

interface i call to device j, Cj,i adds 1. When device j
processes a request for interface i call, Cj,i decreases

by 1 regardless of whether the execution is successful

or not.

Figure 6. Framework of Adaptive Scheduling Algorithm

• Step 3. When the gateway receives the call request of

interface i, it tries to find the target device j′:⎧⎨
⎩j′ = argminj∈Di

Cj,i

Wj,i

Cj′,i < Wj′,i

(9)

• Step 4. If there is no target device j′ meets Formula (9),

the current limiting operation will be performed, i.e. to

wait for the qualified equipment to appear before it is

processed. If there is a timeout in the waiting process,

the request will be rejected; if there is a target device

j′, the request will be forwarded to the device j′ for

execution. Wait for the execution result.

• Step 5. Wj,i automatically adjusts according to the

results of request execution, according to the following

principles: if a large number of requests fail in a short

time, reduce Wj,i; if a large number of requests succeed

in a short time, increase Wj,i; otherwise, Wj,i will

remain unchanged. The specific rules for adjusting Wj,i

are shown in IV.E.

The essence of the above methods: indirectly describing

the service capability Fi (v) of a single device with Wj,i and

describing the load of the device with Cj,i; ensuring that

Cj,i ≤ Wj,i to achieve traffic control; choosing the smallest

equipment with
Cj,i

Wj,i
to achieve average traffic distribution

without precise monitoring the instantaneous request traffic

to the device; automatically adjusting Wj,i according to the

success or failure of the interface call to achieve an adaptive

interface with the unknown rate v∗i .

Figure 6 is an adaptive scheduling algorithm framework

based on this method.

E. Algorithm Parameter

In this subsection, a parameterized Wj,i adjustment rule is

proposed, which can optimize parameters for specific groups

to achieve better performance. Wj,i adjusts the parameters

of the rules, that is, all the parameters of the adaptive

scheduling algorithm. In VI.B we discuss the method of

determining the parameters. It can be seen from IV.D that

398

Authorized licensed use limited to: William & Mary. Downloaded on April 16,2024 at 12:42:17 UTC from IEEE Xplore. Restrictions apply.

two key problems need to be solved in determining Wj,i

adjustment rules:

• Prob 1. How to judge whether a large number of

requests succeed or fail in a “short time”

• Prob 2. The amount of Wj,i should be increased or

decreased.

The second problem is not difficult to solve. Because

group devices are very sensitive to request overload (see

III.C), the adjustment of Wj,i should follow the additive-

increase multiplicative-decrease (AIMD) [15] algorithm. In

the first problem, the judgment of “a large number” can be

based on the ratio of the number of successful or failed

requests to the traffic of requests arriving at the device.

The real difficulty is the definition of “short time”. The

“competitive counting” rule proposed in this subsection can

avoid the direct judgment of “short time” and achieve the

desired results. The following are the “competitive counting”

rules:

• Rule 1. Maintain the current traffic matrix Vn×m, in

which element Vj,i records the rate at which requests

to call interface i reach device j. Vj,i does not need to

be updated frequently (e.g. every minute).

• Rule 2. Maintain the successful request counting matrix

Sn×m. Whenever device j calls interface i successfully,

Sj,i adds 1. If the updated Sj,i satisfies Sj,i ≥ μVj,i,

then Wj,i adds 1 and Sj,i and Fj,i should be reset to

zero.

• Rule 3. Maintain the failure request counting Matrix

Fn×m, when device j fails to call interface i, Fj,i adds

1. If the updated Fj,i satisfies Fj,i ≥ μVj,i, then Wj,i =
max (�αWj,i� , 1) and Sj,i and Fj,i should be reset to

zero.

The key to the “competitive counting” rule is that the

variable first reach the threshold in Sj,i and Fj,i will lead

to the change of Wj,i, and then Sj,i and Fj,i will be

cleared. Therefore, the impact of successful or unsuccessful

requests on Sj,i and Fj,i will not last. Sj,i and Fj,i can

more accurately reflect the group state in a “short time”.

The parameters that need to be determined are α, λ, μ. The

range of them is 0 < α, λ, μ < 1. An adaptive scheduling

algorithm updating Wj,i by using the “competitive counting”

rule can be uniquely represented by a triple (α, λ, μ).

V. DETAILED DESIGN OF ALGORITHM

In this section, we describe the detailed design of the

adaptive scheduling algorithm.

A. Data Structure Used by The Algorithm

The data structures used by the adaptive scheduling algo-

rithm are mainly queues and hash tables (see Figure 7).

Queues are used to store pending requests. The space

complexity is O (N), in which N is the maximum of

the queue length, and the average time complexity of the

inbound and outbound operations is O (1).

Figure 7. Data Structure for Adaptive Scheduling Algorithm

Figure 8. Adaptive Scheduling Algorithmic Process

A hash table is used to store Wj,i and other global

variables. It uses the nested method to access elements

according to “device-interface”. The element is NULL to

indicate there is no corresponding interface deployed on the

device. The space complexity is O (nm), in which n is the

number of devices, and m is the number of interfaces. The

average time complexity of accessing one element is O (1).

B. Algorithm Process

Figure 8 is the detailed process of the adaptive scheduling

algorithm. The space complexity of the algorithm is the

sum of the space complexity of the global variables, that

is, O (N + nm), where N is the maximum queue length, n
is the number of devices, and m is the number of interfaces.

399

Authorized licensed use limited to: William & Mary. Downloaded on April 16,2024 at 12:42:17 UTC from IEEE Xplore. Restrictions apply.

Figure 9. Effect of Adaptive Scheduling Algorithm on Traffic Control
(Single Device)

Owing to N � nm, the space complexity of the algorithm

can be approximated to O (N). The time complexity of the

algorithm is the sum of the time complexity of the following

steps:

• Step 1. Calculate the set of candidate devices D′:
O (n), in which n is the number of devices in the whole

group.

• Step 2. Choose the target device j′: O (n).
• Step 3. The time complexity of the other steps is O (1).

Therefore, the time complexity of the algorithm is O (n).

VI. IMPLEMENTATION OF ALGORITHM

The key to the adaptive scheduling algorithm is adaptive

traffic control, and the key to the performance of the algo-

rithm is the adjustment rules and parameters of the receiving

window. Therefore, there are three steps to implement the

adaptive scheduling algorithm:

• Step 1. Select the adjustment rules of the receiving

window and determine the parameters that need to be

optimized.

• Step 2. Verify the effectiveness of the algorithm to

determine whether the algorithm can effectively control

the traffic to the device.

• Step 3. Aiming at the specific parameters of the

group optimization algorithm, improve the scheduling

Figure 10. Experimental Results of Parameter μ Optimization

efficiency.

For Step 1, we select the “competition counting” rule

introduced in IV.E, and the parameters to be optimized is

the triple (α, λ, μ). In this section we mainly introduce Step
2 and Step 3. In VI.A we verify the effectiveness of the

algorithm, and in VI.B we optimize the algorithm parameters

of the actual group.

A. Algorithm Validity Verification

In this subsection, we verify that the adaptive scheduling

algorithm can effectively control the request traffic to the

devices. Steps of the experiment are as follows:

• Step 1. Build an experimental group consisting of only

one gateway server and one working equipment. The

configuration of software and hardware of the working

equipment is the same as that of III.B.

• Step 2. Deploy the adaptive scheduling algorithm on

the gateway server, and take any legal value for the

algorithm parameter triple (α, λ, μ). Here the parameter

is (α, λ, μ) = (0.5, 0.5, 0.5).
• Step 3. Apply the method described in III.B, and

measure the service capability function Fi (v) of seven

behaviour reflective interfaces on the working equip-

ment in the same network environment as III.B.

• Step 4. Compare the results with those in Figure 3 and

conduct an analysis.

400

Authorized licensed use limited to: William & Mary. Downloaded on April 16,2024 at 12:42:17 UTC from IEEE Xplore. Restrictions apply.

Figure 11. Experimental Results of Parameter λ Optimization

The experimental results are shown in Figure 9. The

abscissa represents the request arrival rate v, and the ordinate

represents the interface service capability Fi (v). The solid

black line represents the result of applying the adaptive

scheduling algorithm to control the traffic (i.e. the mea-

surement result in this subsection), the solid colour line

represents the result of not applying the adaptive scheduling

algorithm (see Figure 3). The dotted line represents the

ideal value F ′
i (v). The request arrival rate v increases

exponentially, and then traverses the interval of the critical

value v∗i linearly (see III.D). The results show that:

• When v is less than or equal to the critical value v∗i , the

application of adaptive scheduling algorithm will lead

to a small reduction of Fi (v), which may be due to the

increased scheduling overhead.

• When v is greater than the critical value v∗i , the Fi (v)
using adaptive scheduling algorithm is significantly

higher than that without adaptive scheduling algorithm,

and the former is close to the ideal value F ′
i (v).

The conclusion is that the adaptive scheduling algorithm

can effectively control the request traffic to the devices

B. Algorithmic Parameter Optimization

In this subsection, the parameter triples (α, λ, μ) of the

adaptive scheduling algorithm are optimized on the experi-

mental group (16 working devices in total and the behaviour

Figure 12. Experimental Results of Parameter α Optimization

reflection interface of the configuration and deployment of

software and hardware is the same as that of III.C). The

optimization objective is to maximize the comprehensive

scheduling efficiency function of the group HQ (v) (see

IV.B). In the rest of this subsection, we describe the ex-

perimental results:

• Fixed α and λ to Optimize μ. Let α = 0.5,λ = 0.5,

and μ ∈ {0.2, 0.4, 0.6, 0.8}. The experimental results

are shown in Figure 10. The “baseline” in the graph is

the result of Round-Robin [16] scheduling algorithm.

The result shows the best candidate value of Mu is 0.4,

so μ′ = 0.4.

• Fixed α and μ to Optimize λ. Let α = 0.5,μ = 0.5,

and λ ∈ {0.2, 0.4, 0.6, 0.8}. The experimental results

are shown in Figure 11. It is known that λ′ = 0.2.

• Fixed λ and μ to Optimize α. Let λ = 0.5,μ = 0.5,

α ∈ {0.2, 0.4, 0.6, 0.8}. The experimental results are

shown in Figure 12. It is known that α′ = 0.8.

• Verification of Local Optimality. The optimal com-

bination of parameters is (α′, λ′, μ′) = (0.8, 0.2, 0.4).
The experimental results are shown in Figure 13 by

comparing the adjacent 26 groups of (α, λ, μ) with

(α′, λ′, μ′). It can be seen that (α′, λ′, μ′) is better

than 26 groups of (α, λ, μ), so it satisfies the local

optimality.

401

Authorized licensed use limited to: William & Mary. Downloaded on April 16,2024 at 12:42:17 UTC from IEEE Xplore. Restrictions apply.

Figure 13. Experimental Results of Local Optimality Verification

VII. CONCLUSION

This paper mainly completed the following works:

• We define the service capability of a single device in

the device cloud and design a method to measure the

service capability of a single device.

• We establish an adaptive scheduling algorithm model.

We define the overall scheduling efficiency of a device

group and determine the maximization of the overall

scheduling efficiency as the scheduling goal.

• We verify the effectiveness of the adaptive scheduling

algorithm in controlling the traffic on a single device

through experiments. We optimize the parameters of

the algorithm for a specific group and verify the local

optimality of the parameter combination.

In a word, in this paper, we design and implement an

adaptive scheduling algorithm for the cloud testing platforms

to more efficiently provide services to their users. The

effectiveness of the algorithm has been preliminarily verified

in the experimental environment and the real scene.

Although the experimental results meet our expectations

and research objectives, the algorithm in this paper still has

the following limitations:

• Limitations of parameter assumptions. In VI.B, we

assume that the parameters of the algorithm can be

optimized independently, but it can not be proved.

Although the results of the experiments are encouraging

in the experimental environment of this paper, it can not

be guaranteed to be suitable for other situations.

• Restrictions on smart device groups. In IV.A, we have

made a severe restriction to the device group to which

the algorithm applies. The smart device groups of real

cloud test platform can hardly meet all these controls,

so it is necessary to reduce the restrictions and conduct

more experiments.

In the future, we can also carry out the following research

based on the research and experimental results of this paper:

• Other adjustment rules of the receiving window. In

this paper, we put forward the “competition counting”

rule, which is simple and effective. However, the “com-

petition counting” rule only utilizes the success request

count, failure request count, and current request traffic

information. If other tuning rules can take advantage of

more information, such as response time, they may get

better performance.

• Different Android versions of smart devices. The

Android testing environment used in this paper is

Android 6.0. Although about 12.0% of all Android

users use Android 6.0 or 6.0.1 as of April 2020, it is

a relatively old version. By testing different Android

operating system versions, we can analyze whether

there is a relationship between the operating system

version and algorithm performance.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science

Foundation of China under grant number 61725201, China

Postdoctoral Science Foundation, and an Open Project Fund

of National Engineering Lab of Big Data System Software

of China.

REFERENCES

[1] Techcrunch, “Number of smartphone users,”
https://techcrunch.com/2015/06/02/6-1bsmartphone-users-
globally-by-2020-overtaking-basic-fixed-phone-subscription,
2015.

[2] S. Saxon, J. Neubeck, M. Collins, D. Weinmann, and W. Dor-
man, “Cloud based test environment,” Oct. 6 2011, uS Patent
App. 12/899,085.

[3] R. Ghazizadeh and P. Fan, “Dynamic priority scheduling
mechanism through adaptive interframe space,” Shanghai,
China, 2007, pp. 1992 – 1995. [Online]. Available:
http://dx.doi.org/10.1109/WICOM.2007.498

[4] Z. Li and M.-Y. Chow, “Adaptive multiple sampling rate
scheduling of real-time networked supervisory control system
- part i,” Paris, France, 2006, pp. 4604 – 4609. [Online].
Available: http://dx.doi.org/10.1109/IECON.2006.347754

[5] Y. Sadi and S. Coleri Ergen, “Energy and delay constrained
maximum adaptive schedule for wireless networked control
systems,” IEEE Transactions on Wireless Communications,
vol. 14, no. 7, pp. 3738 – 3751, 2015. [Online]. Available:
http://dx.doi.org/10.1109/TWC.2015.2411602

402

Authorized licensed use limited to: William & Mary. Downloaded on April 16,2024 at 12:42:17 UTC from IEEE Xplore. Restrictions apply.

[6] D. Merkel, “Docker: lightweight linux containers for consis-
tent development and deployment,” Linux journal, vol. 2014,
no. 239, p. 2, 2014.

[7] I. Keslassy, C.-S. Chang, N. McKeown, and D.-S. Lee,
“Optimal load-balancing,” in Proceedings IEEE 24th Annual
Joint Conference of the IEEE Computer and Communications
Societies., vol. 3. IEEE, 2005, pp. 1712–1722.

[8] F. Yang, H. Mei, J. Lv, and Z. Jin, “On the development of
software technology,” Acta Electronica Sinica, vol. 30, no. S1,
pp. 1901–1906, 2002.

[9] G. Huang, Q. Wang, H. Mei, and F. Yang, “Research on re-
flective middleware based on software architecture,” Journal
of Software, vol. 14, no. 11, pp. 1819–1826, 2003.

[10] H. Cai, “Research on behavioral reflection of internetware,”
Ph.D. dissertation, Peking University, 2017.

[11] A. S. Tanenbaum and M. Van Steen, Distributed systems:
principles and paradigms. Prentice-Hall, 2007, no. 7.

[12] T. L. Casavant and J. G. Kuhl, “A taxonomy of scheduling
in general-purpose distributed computing systems,” IEEE
Transactions on software engineering, vol. 14, no. 2, pp. 141–
154, 1988.

[13] N. Wells, “Busybox: A swiss army knife for linux,” Linux
Journal, vol. 2000, no. 78es, p. 10, 2000.

[14] X. Developers, “Xposed framework hub,” 2019.

[15] D.-M. Chiu and R. Jain, “Analysis of the increase and
decrease algorithms for congestion avoidance in computer
networks,” Computer Networks and ISDN systems, vol. 17,
no. 1, pp. 1–14, 1989.

[16] R. V. Rasmussen and M. A. Trick, “Round robin scheduling–
a survey,” European Journal of Operational Research, vol.
188, no. 3, pp. 617–636, 2008.

403

Authorized licensed use limited to: William & Mary. Downloaded on April 16,2024 at 12:42:17 UTC from IEEE Xplore. Restrictions apply.

