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Abstract 

This study presents a new machine learning algorithm, named Chemical Environment 

Graph Neural Network (ChemGNN), designed to accelerate materials property prediction 

and advance new materials discovery. Graphitic carbon nitride (g-C3N4) and its doped 

variants have gained significant interest for their potential as optical materials. Accurate 

prediction of their band gaps is crucial for practical applications; however, traditional 

quantum simulation methods are computationally expensive and challenging to explore 

the vast space of possible doped molecular structures. The proposed ChemGNN leverages 

the learning ability of current graph neural networks (GNNs) to satisfactorily capture the 

characteristics of atoms' chemical environment underlying complex molecular structures. 

Our experimental results demonstrate more than 100% improvement in band gap 

prediction accuracy over existing GNNs on g-C3N4. Furthermore, the general ChemGNN 

model can precisely foresee band gaps of various doped g-C3N4 structures, making it a 

valuable tool for performing high-throughput prediction in materials design and 

development. 

Teaser 

This study introduces a new graph neural network to predict band gaps in graphitic carbon 

nitride with high accuracy. 

 

 

 

 

 

 

 

 

 

Introduction 

Graphitic carbon nitride (g-C3N4) is one of the oldest synthetic polymers reported in 1834 

by Berzelius and Liebig (1). Due to its chemical inertness and insolubility in most 

common solvents (2), g-C3N4 was rarely explored until 2009, when it was used as a 

photocatalyst for hydrogen production through water-splitting (3). The extraordinary 
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photocatalytic performance of g-C3N4 is primarily ascribed to its band gap of 2.7 eV (4), 

which places its conduction band edge above the proton reduction potential, and its 

valence band edge below the water oxidation potential. Inspired by this pioneering study, 

many efforts have been carried out to engineer the g-C3N4’s band gap for various 

photoelectrochemical applications, such as dye-sensitized solar cells (5), biomedical 

sensors (6), photodynamic cancer therapy (7), photothermally accelerated wound healing 

(8), and water purification (9). For example, a g-C3N4 nanosheet co-doped by sulfur and 

boron reduces the band gap to 2.5 eV, resulting in a more efficient visible-light-driven 

hydrogen production because of a better match between the co-doped g-C3N4’s absorption 

spectrum and the solar power spectrum (10). In a study of water purification (9), the band 

gap of a g-C3N4 nanosheet was found to be drastically reduced to 1.9 eV upon the 

substation of a carbon atom by a phosphorous atom (9). More interestingly, it was 

discovered that the band gap not only depends on a dopant’s element type but also is 

subject to its substitution site. For instance, the substitution by nitrogen at two chemically 

inequivalent carbon sites yields distinctive band gaps of 2.57 eV and 2.90 eV (9), 

suggesting the importance of atomically precise doping for desired photophysical 

properties of a photocatalyst such as doped g-C3N4. With the prosperous and rapid 

progress of single-atom catalysts over the past decade (11), the precise tuning of band 

gaps through doping has become feasible, paving the way for a systematic exploration of 

the optimal doping scheme for a given photochemical function of g-C3N4.   

Due to the importance of photophysical properties in the discovery and design of g-C3N4, 

it is critical to accurately predict them utilizing molecular structures and atomic 

characteristics, as has been widely done in other functional materials. For instance, a 

group of emergent high-temperature superconductors was discovered in doped 

ferroelectrics due to a remarkable electron-phonon coupling when the dopants move the 

ferroelectrics’ Fermi surface above their conduction band edge (12). Traditional methods 

use quantum simulations to estimate the band gap, such as ab initio molecular dynamics 

(AIMD) (13, 14), quantum Monte Carlo (15, 16), and density functional theory (17, 18). 

However, these usually are computationally expensive, particularly for complex systems. 

Recently, large-scale quantum chemical calculations, molecular dynamics simulations, 

and high-throughput experiments have produced unprecedented amounts of data for 

analyses. When machine learning is applied to material property prediction, it provides an 

efficient and convenient way of predicting promising molecules from a pool of candidates 

(19) and even proposing novel molecules (20) through a systematic exploration of 

structure-property relationships in chemical space (21, 22). For example, heptazine, the 

building block of g-C3N4, consists of five chemically unique doping sites. Even if we 

consider only twenty elements as potential dopants for a triply doped g-C3N4, there are 

millions of possible chemical structures, which makes quantum simulation a daunting task 

that can only be resolved by machine learning. 

To predict the optical band gaps of graphitic carbon nitride and its doped variants using 

their molecular structures, the very first yet challenging step is to form a permutation-

invariant representation of the three-dimensional non-Euclidean molecular structures. In 

the context of machine learning, graphs have been used to fulfill the need to represent 

molecule structures (23), where atoms are treated as nodes and chemical bonds as edges. 

Graph neural networks (GNNs), such as graph convolutional network (GCN) (24) and 

message passing neural networks (MPNN) (25), are popular deep learning models 

designed specifically to learn the graph representation for downstream prediction tasks, 

including classification and regression. GCN has found extensive application in the data 
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analyses of molecular dynamics (26) and medical diseases (27, 28), and MPNN 

generalizes multiple categories of spatial GCNs to learn molecular features (29-31) and 

shows promising results in molecular property prediction (32-36). Both methods rely on 

aggregating messages from a node and its neighbors to generate the node's representation. 

In MPNN, messages are passed among neighboring nodes via a message function, the 

node embeddings are then updated through a vertex function, and the resulting molecule 

feature representations are generated using a readout function from the node embeddings 

in the graph.  

The conceptual similarity between GNNs and the underlying chemical bonding topology 

has led to the widespread use of GNNs in predicting quantum mechanical properties. For 

instance, in a crystal graph convolutional neural network (CGCNN) (37) study, eight 

physical properties, such as band gap and Fermi energy, were accurately predicted for 

46744 crystals. In another equivariant message passing neural network study (38), 

rotationally equivariant representation was proposed to enable the prediction of tensorial 

properties and molecular spectra. Graph isomorphism network (GIN) (39) is designed for 

discrete feature space to distinguish isomorphic graph structures in practical applications. 

More recently, the neural equivariant interatomic potentials (NequIP) (40) was developed 

to perform molecular dynamics simulations at the accuracy of density functional theory 

while demanding a fractional of its computational cost. These studies showcase the 

efficacy of GNNs in capturing complex relationships and spatial arrangements, enhancing 

our understanding of chemical systems and accelerating discovery in materials science and 

quantum chemistry.  

While the aforementioned GNN models use a single aggregation function (𝑆𝑢𝑚 or 𝑀𝑒𝑎𝑛) 

to generate node features, this may not effectively exploit an atom’s chemical 

environment, which affords different band gaps in various molecules through diverse 

interatomic interactions. As a result, such node features are insufficient to identify local 

molecular structures. As illustrated in Fig. 1, using a single aggregation function fails to 

differentiate neighborhood messages from different molecular structures (detailed 

explanations are given in the Methods section). It can lead to poor node representations 

that are unable to reflect the local chemical environment characteristics, and thus 

inaccurate structure-dependent property prediction, such as band gaps.  

To address this challenge, we proposed a new Chemical Environment Graph Neural 

Network (ChemGNN) that utilizes chemical environment adaptive learning (CEAL) layers 

to effectively extract deep information from the neighboring environment of each node. 

The ChemGNN model can automatically adapt multiple aggregators to provide valuable 

insights into the chemical environments of atoms to generate representations of nodes. 

Previous works in the field have also explored the use of multiple aggregation functions 

for graph data learning. GraphSAGE (41) utilizes multiple aggregators to combine node 

features from a fixed-size sampled neighborhood. However, in GraphSAGE, no learnable 

weights are assigned specifically to the aggregated messages, which are then used 

individually in a sequence to update the features of the central node. The order of 

aggregators may impact the model performance. In ChemGNN, we leverage aggregated 

neighborhood messages as a collective input to the MLP for feature updating. Therefore, 

the order of aggregators is not a concern in our approach. Inspired by cognitive attention, 

graph attention network (GAT) (42) implicitly assigns different weights to nodes in a 

neighborhood based on their messages.  
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Fig. 1. Four examples demonstrate that a single aggregator cannot distinguish 

between different g-C3N4 structures. Four aggregation functions (𝑀𝑒𝑎𝑛, 𝑀𝑎𝑥, 

 𝑀𝑖𝑛, and 𝑆𝑡𝑑) are employed to aggregate messages (atomic valence electrons) 

from neighboring nodes for the central atom. The bar plots illustrate the 

differences in values among the four aggregations of molecule structure pairs (A 

and B) in a column, respectively. It is shown that using a single aggregator, 𝑀𝑒𝑎𝑛 

in (a), 𝑀𝑎𝑥 in (b), 𝑀𝑖𝑛 in (c), and 𝑆𝑡𝑑 in (d) alone fails to differentiate the 

molecule structure pairs in (a)-(d), respectively. 

 

Recently, principal neighborhood aggregation (PNA) (43) introduced different scalers for 

the aggregated messages of central nodes, but these scalers are based on node degrees and 

are not learnable. It fails to capture the characteristics of atomic interactions when 

chemical composition changes. For example, consider the scenario where an atom is 

substituted with a different type of atom. While the node degree does not change, the 

characteristics of atomic interactions do change. This indicates that PNA's information 

acquisition of the chemical environment is not sufficiently comprehensive. Our approach, 

ChemGNN, addresses this limitation by employing learnable weights applied to the 

aggregation functions, enabling us to explore a more accurate representation of the 

complex interactions within chemical systems. Another related approach, Deepergcn (44), 

proposed a generalized aggregation function that is parameterized by a continuous 

variable. By learning the variable, the generalized aggregation function can be considered 

as a combination of 𝑀𝑒𝑎𝑛 and 𝑀𝑎𝑥. However, it is unclear how to generalize the 

aggregation function to include statistical aggregations such as 𝑉𝑎𝑟 and 𝑆𝑡𝑑. Isotropic 

GNN (EGC-M) (45) employs multiple basis weights and node-wise weights for multiple 

aggregators. While this approach is close to our work, the use of multiple basis weights to 

aggregate messages can result in an excessive number of parameters when dealing with a 

large number of atoms in chemical systems.  

Our studies show that the proposed ChemGNN algorithm can predict the optical band 

gaps of g-C3N4 nanosheets and eight of its doped variants more than 100% accurately than 

other GNN models, including GCN, GraphSAGE, GAT, MPNN, and PNA. More 

significantly, since the CEAL layers can effectively extract an atom’s chemical 
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environment characteristics, the ChemGNN models are expected to afford high prediction 

accuracy for other molecule properties, which largely depend on local interatomic 

interactions. 

 

Results  

Details of the ChemGNN algorithm are given in the Methods section. Concisely, 

ChemGNN is designed with CEAL layers (adaptive aggregation mechanism) to improve 

the information extracting ability. The architecture of a CEAL layer is illustrated in Fig. 2. 

A set of aggregators (detailed in Table 2) are exploited to collect various aspects of the 

chemical environment attributes of a node. The weights are adaptively learned in the 

training process to determine the optimal combination of aggregation functions based on 

the chemical environments of atoms. These chemical environment features are assigned 

with adaptively learnable weights to reflect their importance in determining the central 

node’s representation. Compared with other GNN models, ChemGNN can gain effective 

insight into the local chemical environments to facilitate molecular property prediction. To 

demonstrate the advantage of the proposed model, g-C3N4 and its eight doped variants are 

selected as the research objects to predict their optical band gaps. 

 

Fig. 2. The architecture of a CEAL layer. A set of aggregators are utilized to extract 

various attributes of the chemical environment of an atom. Adaptively learnable 

weights are assigned to the aggregators to reflect their importance in determining 

the central node’s representation. MLPs (multilayer perceptron) are applied as 

pre/post-processing layers to enhance the expressiveness of a CEAL layer. 

 

The experiments were conducted using PyTorch Geometric, implemented on an NVIDIA 

RTX 3090 Ti GPU with 24GB RAM. A global sum pooling was employed as the readout 

layer for all models. The training process for all models utilized the Adam optimizer (46) 

with a plateau learning rate scheduler. The initial learning rate was set to 0.001, with a 

drop factor of 0.5. The patience for the learning rate scheduler was set to 30 epochs, and a 

lower bound of 0.0001 was imposed on the learning rate. The batch size is 64~128, and 

the maximum number of epochs is 400. To avoid overfitting, early stopping is utilized 

with a patience of 30 epochs. Each dataset is randomly partitioned into the training (60%), 

validation (10%), and testing (30%) sets, respectively. To ensure the robustness of the 

results, all reported findings in this section were based on five independent experiments. 

All methods utilize the same features of nodes and edges for comparison, but the 

processing methods for these features vary from model to model.  
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Water and Heptazine 

Aiming to benchmark our proposed ChemGNN model against GCN, we first compare 

their performance on the band gaps of water and heptazine, which are the most common 

molecule and the building block of g-C3N4, respectively. Our approach shows its 

advantages over GCN as molecular structures become slightly complex from water to 

heptazine. Water is the most common solvent of g-C3N4, and it only consists of one 

oxygen atom and two hydrogen atoms (Fig. 3(a)). For such a simple molecule, excellent 

performance is expected from any established machine learning algorithm due to the low 

complexity and high symmetry of water’s molecular structure. In Fig. 3(b) and 3(c), 

nearly all data points fall very close to the diagonal line, illustrating a remarkable 

agreement between the predicted and true values obtained by both GCN and ChemGNN 

models. The average predicted optical band gap of ~10.8 eV is well in line with water’s 

famous set of narrow bands near 115 nm, corresponding to a Rydberg transition at 10.7 eV 

(47).  

Unlike the three-atom H2O, heptazine has six oxygen, seven nitrogen, and three hydrogen 

atoms (Fig. 3(d)). Due to its notably increased degrees of freedom, a more advanced 

machine learning algorithm is required to accurately map its molecular structures to its 

optical band gaps. As presented in Fig. 3(e) and 3(f), GCN exhibits a cluster pattern, 

whereas ChemGNN produces a dense linear regression pattern. This distinction highlights 

the superior performance of ChemGNN compared to GCN. More specifically, our model 

has a much higher fitting coefficient (R2) value than GCN (0.213 vs. 0.913). Our model 

also yields a lower mean absolute error (MAE) than GCN (0.031 eV vs. 0.071 eV). The 

average predicted optical band gap of ~3.8 eV for heptazine is consistent with the 

experimental value of 3.7 eV (48).  

 

Fig. 3. Predicted vs. true band gaps of water and heptazine molecules using GCN and 

ChemGNN. (a) Molecular structure of water. The fitting coefficient R2 and MAE 

indicate that simple water molecules can be almost equally well handled by both 
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GCN (b) and ChemGNN (c). (d) Molecular structure of heptazine. The ChemGNN 

model (f) significantly outperforms GCN (e) in predicting the optical band gaps of 

slightly more complex heptazine. 

 

g-C3N4 and its Doped Variants 

As shown in Fig. 4(a), a pristine g-C3N4 nanosheet consists of heptazine units connected 

by tertiary nitrogen atoms. For each heptazine unit, there are three chemically inequivalent 

nitrogen sites, (N1, N2, and N3 in Fig. 4(b)), while the number of chemically inequivalent 

carbon sites is two (C1 and C2 in Fig. 4(b)). In the present study, we explored the 

substitution of nitrogen for carbon and phosphorous, in addition to the doping of 

phosphorous at the carbon sites. Each doped compound is labeled as A→B, where A is the 

doping site and B is the dopant’s element. For instance,  1→P refers to the doped g-C3N4 

wherein the nitrogen atom at an N1 site is substituted by a phosphorous atom. As a result, 

nine g-C3N4 compounds, including the undoped ones, were investigated. Specifically, 

each compound is represented by a 3×3 supercell (Fig. 4(a)) with an experimental crystal 

structure of a      Å, b      Å, and γ  6 ° determined by X-ray diffraction (49). 

Since the band gap of a g-C3N4 nanosheet is sensitive to its atomistic structure, which 

notably changes upon thermal fluctuation, a large ensemble of atomistic configurations 

obtained from our quantum-based AIMD simulations is needed to fully understand the 

structure-band gap relationship by accounting for the thermal effect, especially at room 

temperature. Therefore, approximately 10,000 atomistic configurations were randomly 

extracted for each compound from a 1-ns AIMD trajectory. 

 

Fig. 4. Molecular structure of g-C3N4 and its doping sites. (a) Molecular structure of a 

3×3 supercell of g-C3N4. The carbon and nitrogen atoms are colored cyan and 

blue, respectively. (b) Designated doping sites (i.e., N1, N2, N3, C1, and C2) in the 

heptazine unit of an undoped g-C3N4 nanosheet. 

 

Nine datasets of approximately 110,000 atomistic configurations and their optical band 

gaps of the pristine g-C3N4 nanosheet and its eight doped variants were obtained by the 

AIMD simulations. Those datasets (Undoped, C1P, C2P, N1C, N2C, N3C, N1P, N2P, and 

N3P, see detail in subsection g-C3N4 and Its Doped Variants) have 22237, 10165, 10715, 

10305, 13217, 10570, 13809, 12981, and 11781 atomistic configurations, respectively. For 

the odd-electron datasets (C1P, C2P, N1C, N2C, and N3C), the band gaps for both the 

alpha and beta spin channels were calculated due to the broken spin symmetry. By 
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contrast, for the even-electron datasets (Undoped, N1P, N2P, and N3P), only the band 

gaps for the alpha spin channel were evaluated due to their spin-paired orbitals.  

We applied our ChemGNN model to predict the band gaps of g-C3N4 and its doped 

variants. A ChemGNN model with 4 CEAL layers (see the Discussion section for the 

selection of layer number) was used to perform optical band gap prediction. The following 

chemical characteristics were used as the initial node embedding, i.e., coordinates of 

atoms in space, atom type, and electron numbers on the 1s, 2s, 2p, 3s, 3p, and 3d angular 

momentum channels. For detailed information on model settings and fine-tuned 

parameters for each model, please refer to supplementary Table S1. 

As a first step, to illustrate the predictive power of our proposed approach on a single 

category of g-C3N4 molecular structures, the ChemGNN model was trained and tested on 

the N1C dataset. The dataset contains 10,305 molecular structures and their optical band 

gaps of the alpha and beta spin channels obtained by AIMD simulations. Figures 5(a) and 

5(b) illustrate the accurate prediction capability of our proposed ChemGNN model for the 

optical band gaps of the alpha (red) and beta (blue) spin channels of N1C. In comparison 

to GCN with an MAE of 0.123 eV, our ChemGNN model reduces the MAE to 0.035 eV, 

demonstrating remarkable performance enhancement. In Fig. 5(c), the predicted 

distribution of optical band gaps aligns nearly perfectly with that of true distribution even 

for odd-electron systems, such as N1C, featuring distinct band gaps for alpha and beta 

spin channels.   

 

Fig. 5. Performance comparison between GCN and ChemGNN on the N1C dataset. 

Predicted vs. true band gaps of the N1C dataset with the Alpha (red) and Beta 

(blue) spin channels, using the GCN (a) and ChemGNN (b), respectively. (c) 

Distributions of the predicted (red solid line) vs. true optical band gaps (green 

dashed line) of N1C. 

 

Secondly, to demonstrate the superior capabilities of ChemGNN in accurately predicting 

the optical band gaps of molecules with diverse categorical structures, our model was 

trained using all nine datasets containing g-C3N4 and its eight doped variants. After the 

model was trained, testing data containing a mixture of the above nine categories of 

structures were fed into the model and their optical band gaps were predicted. The 

performance of the proposed model was compared with those of other established GNN 

models, including GCN, GAT, GraphSAGE, MPNN, and PNA. Fig. 6(a) shows that the 

ChemGNN model has the lowest MAE (0.031 eV), indicating a significant improvement 

in prediction accuracy. The average MAE of the predicted optical band gaps attained by 
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our ChemGNN over five experiments is 106%, 84%, 116%, 100%, and 38% lower 

respectively than those of GCN, GraphSAGE, GAT, MPNN, and PNA. Furthermore, as 

shown in Fig. 6(b-g), the proposed model yields optical band gap predictions much more 

closely concentrated along the diagonal line, indicating the superiority of ChemGNN over 

other established     models. All these results strongly affirm our model’s salient 

capabilities to accurately extract information from the chemical environment of atoms for 

the purpose of mapping molecular structures to optical band gaps. Importantly, this ability 

to effectively extract the local chemical environment information would enable the 

accurate prediction of any other molecular properties that are subject to atomic 

interactions, accelerating the experimental discovery of novel materials with desired 

functions.  

 

Fig. 6. Performance comparison between GNN models and our ChemGNN. (a) The 

boxplot of MAE under five independent experiments using ChemGNN and other 

established GNN models. (b-g) Predicted vs. true band gaps obtained by various 

GNN models. The densities of predicted band gaps are visualized by colors. All 



Manuscript Template                                                                                                                                                           Page 10 of 19 

 

models were trained and tested using a mixture of data from g-C3N4 and its eight 

doped variants. 

 

Discussion  

Experimental results demonstrate that the proposed ChemGNN model consistently 

exhibited superior performance with respect to mean absolute error and R2 of optical band 

gap predictions for molecule structures ranging from simple (such as water and heptazine) 

to complex (g-C3N4 and its eight doped variants). To further explore the category-wise 

performance of optical band gap prediction, our trained model used in Fig. 6 was tested on 

single-category data. Fig. 7 displays category-wise MAEs and predicted band gaps. Most 

of the predicted band gaps are prevalent along the diagonal line, evidenced by the high 

density of predicted data points. The category-wise performance of the proposed model 

with other established GNNs are listed in Table 1. The proposed model constantly yields 

significantly lower prediction errors than other GNN models. We also performed ablation 

studies to examine the isolated effect of the adaptive aggregation mechanism, see Fig. S1 

in the supplementary. Moreover, to validate the effectiveness and applicability of our 

model, we evaluate its performance on two well-known datasets: QM9 and FePt, see Fig. 

S2 in the supplementary. Fine-tuned model hyperparameters are listed in Table S1 of the 

supplementary.  

In conclusion, the proposed ChemGNN model uses the adaptive aggregation mechanism 

to extract deep insight from atoms’ chemical environment, addressing the limits of using 

single aggregation. Experimental results show that the proposed model can significantly 

improve the optical band gap prediction of graphitic carbon nitride nanosheets and the 

doped variants. Moreover, the proposed model's learning power is promising, and it can be 

potentially applied to predicting other structure-dependent molecular properties, such as 

nuclear magnetic resonance chemical shifts. Overall, the ChemGNN model offers a 

promising approach to enhance predictions of molecular properties, which could have 

broad applications in various fields, including material science, drug discovery, and 

computational chemistry. 
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Fig. 7. Category-wise performance of our ChemGNN. The model was the same one 

trained in Fig. 6 but tested on category-wise data, including g-C3N4 and its eight 

doped variants. (a) Category-wise MAEs. (b-j) Predicted vs. true band gaps. 
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Table 1. Category-wise MAEs (eV) obtained by the ChemGNN and other established 

GNN models. The category-wise MAEs and standard deviations are averaged over 

five experiments. 
Models/ 

Variants 
GCN GraphSAGE GAT MPNN PNA ChemGNN 

Undoped 0.0679±0.02 0.0537±0.03 0.0644±0.01 0.0680±0.02 0.0470±0.01 0.0324±0.01 

C1P 0.0662±0.01 0.0688±0.01 0.0719±0.03 0.0614±0.03 0.0463±0.03 0.0304±0.02 

C2P 0.0661±0.01 0.0676±0.01 0.0660±0.03 0.0761±0.02 0.0448±0.02 0.0315±0.02 

N1C 0.0732±0.02 0.0530±0.02 0.0475±0.02 0.0568±0.01 0.0486±0.02 0.0312±0.01 

N2C 0.0739±0.03 0.0498±0.04 0.0663±0.01 0.0632±0.01 0.0477±0.02 0.0344±0.01 

N3C 0.0648±0.01 0.0638±0.01 0.0727±0.04 0.0611±0.02 0.0518±0.02 0.0330±0.01 

N1P 0.0633±0.02 0.0582±0.02 0.0675±0.05 0.0597±0.02 0.0410±0.02 0.0303±0.01 

N2P 0.0621±0.02 0.0554±0.02 0.0753±0.02 0.0665±0.03 0.0507±0.01 0.0315±0.02 

N3P 0.0631±0.02 0.0599±0.03 0.0626±0.02 0.0595±0.03 0.0402±0.01 0.0285±0.02 

Average 0.0663±0.02 0.0589±0.02 0.0691±0.01 0.0634±0.01 0.0465±0.01 0.0315±0.01 

 

 

Materials and Methods 

Quantum Mechanics Simulation for the Band Gap of Doped g-C3N4 

Unless otherwise specified, all ab initio simulations in the present study were performed 

by the open-source CP2K software (50) with Goedecker-Teter-Hutter (GTH) 

pseudopotential (51), Heyd-Scuseria-Ernzerhof (HSE06) exchange-correlation functional 

(52), and polarized-valence-double-𝜁 (PVDZ) basis set (53). Our chosen HSE06 range-

separated hybrid functional is justified by our calculated band gap of 2.78 eV for the 

optimized undoped g-C3N4 nanosheet. Moreover, for each of our selected atomistic 

configurations, its angular-momentum-resolved Mulliken charges (54) were also 

calculated for their direct relevance to the electron distribution that governs the band gap. 

As a result, the atomic coordinates and angular-momentum-resolved Mulliken charges 

were used as the input data for our machine-learning model to predict the band gaps of the 

undoped and doped g-C3N4 nanosheets.  

Graph Neural Networks (GNNs) 

A graph 𝐺 consists of a vertex (also called a node) set 𝑉 and an edge set ℇ, i.e., 𝐺  
 𝑉, ℇ . The topology of a graph is described by the adjacency matrix 𝐷, which is a square 

matrix of size 𝑀 × 𝑀 in which 𝑀 is the number of nodes. 𝐷 𝑢, 𝑣    if node 𝑢 is 

connected to node 𝑣, otherwise 𝐷 𝑢, 𝑣   . A node is represented by a feature 

(embedding) vector 𝑋 ∈ ℝ𝑚×1 containing the embedded node properties, in which 𝑚 is 

the number of properties. Graphs are suitable for representing molecule structures because 

they are permutation invariant, i.e., when a molecule rotates in 3D space, the graph 

representing its structure does not change. When a graph is used to represent the structure 

of a molecule, an atom is represented as a node and a chemical bond between atoms is 

represented as an edge. Atomic characteristics are used as a node’s initial embedding. 

GNN is a framework that computationally learns how to propagate information across the 
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graph to compute node embeddings for downstream tasks such as optical band gap 

prediction. A GNN model consists of multiple layers. A GNN layer is a two-step 

computation process, including message computing and message aggregating. The two 

steps are defined as follows in equations (1) and (2). 

𝑚𝑢
 𝑘+1 

 𝑚𝑠𝑔 𝑘+1 (𝑋𝑢
 𝑘 

), 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}             (1) 

𝑋𝑣
 𝑘+1 

 𝑎𝑔𝑔 𝑘+1  {𝑚𝑢
 𝑘+1 , 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}}               (2) 

In Eq. (1), 𝑁 𝑣  is the set of neighboring nodes of node 𝑣, 𝑋𝑢
 𝑘 

 is the node feature at the 

𝑘𝑡ℎ GNN layer. 𝑚𝑠𝑔 𝑘+1  and 𝑚𝑢
 𝑘+1 

 are the message function and message of node 𝑢 at 

the  𝑘 +   𝑡ℎ layer, respectively. In Eq. (2), 𝑎𝑔𝑔 𝑘+1  and 𝑋𝑣
 𝑘+1 

 are the aggregation 

function and feature vector of node 𝑣 at the  𝑘 +   𝑡ℎ layer. Different instantiations of 

GNN utilize various message and aggregation functions. Compared to established GNN 

models, such as GCN, GAT, GraphSAGE, and MPNN, the proposed ChemGNN model 

can effectively learn the deep features of nodes from graphs to significantly improve the 

structure-dependent property predictions, such as the optical band gaps of g-C3N4 and its 

doped variants. 

Chemical Environment Graph Neural Network (ChemGNN)  

As discussed in the Introduction section, Fig. 1 uses the atomic valence electrons as the 

sole node feature to illustrate the difference |∆| between these aggregators for four distinct 

scenarios. In Fig. 1(a), the primary difference between structures A and B is the 

substitution of a carbon atom for a phosphorous atom. The more electropositive 

phosphorous atom loses approximately one electron to its neighboring nitrogen atoms, 

eventually carrying 𝑎 +   net charge. Since a neutral phosphorous atom carries one more 

valence electron than its carbon counterpart, the N1→P doping happens to preserve the 

mean valence electrons of the three atoms connected to the central nitrogen atom, 

resulting in a nearly negligible |∆𝑀𝑖𝑛| of 0.0002. By contrast, the N-P bond polarity is 

substantially greater than the N-C bond, affording a large |∆𝑀𝑎𝑥| of 0.3069 due to more 

electrons accumulated at the central nitrogen atom. In Fig. 1(b), a nitrogen atom is 

replaced by a carbon atom. Since a more electronegative nitrogen atom always carries 

more valence electrons than a more electropositive carbon atom, the N2→C replacement 

minimized |∆𝑀𝑎𝑥| whereas |∆𝑀𝑖𝑛| surged to 1.0434 for a great change of valence electrons 

on the central carbon atom. Contrarily, the most electropositive tertiary carbon atom is 

preserved in N2→C substitution (Fig. 1(c)) to furnish zero |∆𝑀𝑖𝑛| while changing a 

secondary nitrogen to a tertiary one renders a large |∆𝑀𝑎𝑥| of 1.0881. In Fig. 1(d), |∆𝑆𝑡𝑑| is 

expected to be small as both central atoms are bonded to others with the same elements 

regardless of their type. Nevertheless, the notable electronegativity difference between 

carbon and nitrogen again yields large values of |∆𝑀𝑒𝑎𝑛|, |∆𝑀𝑎𝑥|, and |∆𝑀𝑖𝑛|.  

As presented in Fig. 1(a), if the 𝑀𝑒𝑎𝑛 aggregator is used alone, the message received 

from the central nitrogen atom’s chemical environment is insufficient to differentiate the 

pair of molecular structures. Figs. 1(b), 1(c), and 1(d) further illustrated that using only 

𝑀𝑎𝑥, 𝑀𝑖𝑛, and 𝑆𝑡𝑑 aggregators in the cases respectively, cannot differentiate the 

molecular structures of the pair in each scenario. A lack of ability to differentiate 

structures will result in poor performance to predict structure-dependent molecule 

properties, such as optical band gaps. Therefore, to extract the chemical environment 

information effectively, it is proposed to exploit a scheme that adaptively employs 
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multiple aggregators. These aggregators are assigned learnable weights to represent the 

interaction between atoms and their chemical environments. In this work, a Chemical 

Environment Graph Neural Network with adaptive learning is proposed to fulfill this task. 

In standard GNNs, node and edge features pass through an MLP before the aggregation 

step. However, aggregators allow for more expressive power in capturing complex 

relationships and interactions between nodes in a graph. This is the intuition behind 

MPNNs, including GraphSAGE, GAT, GIN, EGC, and ChemGNN. Furthermore, 

aggregators provide a mechanism for nodes to exchange and fuse information with their 

neighbors. Different aggregation functions can capture different types of interactions and 

behaviors. 

The overall framework of ChemGNN for optical band gap predictions of g-C3N4 

nanosheet and its doped variants is illustrated in Fig. 8. The model takes the molecular 

structures as input and predicts the optical band gap (a graph-level property) of the 

molecules. Specifically, atoms are interpreted as nodes and chemical bonds are interpreted 

as edges in a graph. A stack of CEAL layers is exploited to aggregate messages from 

neighboring nodes to extract the underlying node embeddings. The edge features are first 

transformed linearly by the edge encoder to have the same size of node feature vectors. 

The extracted node embeddings obtained by the last CEAL layer are sent to a readout 

layer to form a graph-level representation. The graph representation is then used to predict 

the optical band gaps of g-C3N4 and its doped variants.  

 

Fig. 8. Overview of ChemGNN for optical band gap prediction of g-C3N4 nanosheet. 

CEAL layers are employed to extract messages from atoms’ chemical 

environments. 

 

Adaptive Aggregation Mechanism 

Our model further investigates on top of the classical GNN model PNA. In PNA, multiple 

aggregators are introduced. However, these aggregators have equal weights before being 

processed by degree-based scalers. While degree-based scalers capture the topology of 

graphs and have proven beneficial for networks such as social networks, they may not be 

sufficient for accurately learning representations of atomic interactions in chemical 

compounds, which are crucial for predicting molecular properties. Consider the doping 

operation in chemicals, where an atom is replaced by a different type of atom. For 

instance, the replacement of the carbon atom in CO by an oxygen atom turns the molecule 

into O2.  hile the bonding topology does not change after this C→O substitution, the 

interatomic interactions do. To effectively learn representations of atomic interactions, we 

propose employing learnable weights that are applied to the aggregators. This approach 

allows for adaptive aggregation and enables the model to capture variations in atomic 

interactions, leading to improved molecular property predictions. These weights are 
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adaptively learned in the training process to determine the optimal combination of 

aggregation functions based on the local chemical environments of atoms. It is achieved 

by assigning learnable weights to a finite collection of aggregators and formulating an 

arbitrary linear combination of them, written as equations (3)-(6). 

ℎ𝑖
 𝑘 

 [
𝐺 𝑤0

 𝑘 
 ⋅ 𝑎𝑔𝑔_𝑚𝑠𝑔0

⋮

𝐺 𝑤𝑀−1
 𝑘 

 ⋅ 𝑎𝑔𝑔_𝑚𝑠𝑔𝑀−1

]                                 (3) 

𝑎𝑔𝑔_𝑚𝑠𝑔𝐴  ⊕𝐴 (𝑀𝐿𝑃𝑚𝑠𝑔
 𝑘 

(𝑥𝑖
 𝑘−1 , 𝑥𝑗

 𝑘−1 , 𝑒𝑗,𝑖)), 𝑗 ∈ 𝑁 𝑖 , 𝐴 ∈ { ,⋯ ,𝑀 −  } (4) 

𝐺(𝑤𝐴
 𝑘 

)  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤0
 𝑘 

, … , 𝑤𝑀−1
 𝑘 

), 𝐴 ∈ { ,… ,𝑀 −  }                 (5) 

where nodes 𝑖 and 𝑗 are the central and neighboring nodes, respectively. ℎ𝑖
 𝑘 

 represents 

the message received by the central node 𝑖 at the  𝑘 𝑡ℎ layer. 𝑁 𝑖  is the neighborhood of 

node 𝑖. 𝑥𝑖
 𝑘−1 

 and 𝑥𝑗
 𝑘−1 

 are the node features at the  𝑘 −   𝑡ℎ layer. 𝑒𝑗,𝑖 is the edge 

feature from node 𝑗 to 𝑖. ⊕𝐴 is an aggregation function. Candidate aggregators in this 

work are given in Table 2. 𝑤𝐴
 𝑘 

 is the learnable weight for aggregator 𝐴 at the  𝑘 𝑡ℎ layer, 

𝑀 is the number of aggregators. 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 is used as the gate function to ensure the weight 

of an aggregator 𝐺(𝑤𝐴
 𝑘 

) ∈ [ , ] and the sum of weights ∑ 𝐺(𝑤𝐴
 𝑘 

)   𝑀−1
𝐴=0 . The final 

aggregated messages ℎ𝑖
 𝑘 

 and the features of the central node 𝑖 are fed into the 𝑀𝐿𝑃𝑢𝑝𝑑𝑎𝑡𝑒
 𝑘 

 

to update the embedding of the central node, which is formulated as follows: 

𝑥𝑖
 𝑘 

 𝑀𝐿𝑃𝑢𝑝𝑑𝑎𝑡𝑒
 𝑘 

 𝑥𝑖
 𝑘−1 

, ℎ𝑖
 𝑘 

                   (6) 

CEAL is a robust and compelling instantiation of the general GNN framework. 𝑋𝑖
 0 

∈

ℝ10×1 is the initial node feature vector, consisting of atom coordinates in space, the atom 

type, and the electron numbers on the 1s, 2s, 2p, 3s, 3p and 3d angular momentum 

channels. The architecture of a CEAL layer is illustrated in Fig. 2. 

Table 2 lists the aggregation functions investigated in this work. The aggregator set 𝒜  
{𝑆𝑢𝑚,𝑀𝑒𝑎𝑛,𝑀𝑎𝑥,𝑀𝑖𝑛, 𝑆𝑡𝑑} contains diverse aggregate functions to extract various 

characteristics of an atom’s chemical environment. Our candidate function set contains 

aggregate functions with sufficient diversity to expand the search space and improve 

performance. The first type of aggregators is mean aggregation 𝑀𝑒𝑎𝑛𝑢 𝑋
𝑘  and sum 

aggregation 𝑆𝑢𝑚𝑢 𝑋
𝑘 , representing the average and total incoming message of node 𝑢 at 

layer 𝑘. 𝑑𝑢   |𝑁 𝑢 | is the number of neighboring nodes. The second type of aggregators 

is maximum and minimum aggregations, 𝑀𝑎𝑥𝑢 𝑋
𝑘  and 𝑀𝑖𝑛𝑢 𝑋

𝑘 , through which the 

largest and smallest neighbor incoming messages are selected. The third type of 

aggregators is the standard deviation or variance aggregations, 𝑆𝑡𝑑𝑢 𝑋
𝑘  or 𝑉𝑎𝑟𝑢 𝑋

𝑘 , 
which quantify the distribution characteristics (e.g., diversity) of adjacent nodes. In 

addition to the above common aggregators, our CEAL layer can integrate more 

aggregators, such as normalized moments aggregations, 𝑆𝑘𝑒𝑤𝑢 𝑋
𝑘 , and 𝐾𝑢𝑟𝑢 𝑋

𝑘 , 

which are based on the 𝑛𝑡ℎ root normalization and represents skewness  𝑛     and 
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kurosis (𝑛   ). We expect that higher moments can better grasp the messages of 

neighboring nodes. The aggregation functions can be expressed as equations (7) and (8): 

𝑆𝑘𝑒𝑤𝑢 𝑋
𝑘  

1

𝑑𝑢
∑ (𝑋𝑣

𝑘−𝑀𝑒𝑎𝑛𝑢(𝑋𝑘))
3

𝑣∈𝑁 𝑢 

(
1

𝑑𝑢
∑ (𝑋𝑣

𝑘−𝑀𝑒𝑎𝑛𝑢(𝑋𝑘))
2

𝑣∈𝑁 𝑢 )

3
2

                     (7) 

𝐾𝑢𝑟𝑢 𝑋
𝑘  

1

𝑑𝑢
∑ (𝑋𝑣

𝑘−𝑀𝑒𝑎𝑛𝑢(𝑋𝑘))
4

𝑣∈𝑁 𝑢 

(
1

𝑑𝑢
∑ (𝑋𝑣

𝑘−𝑀𝑒𝑎𝑛𝑢(𝑋𝑘))
2

𝑣∈𝑁 𝑢 )
2                (8) 

Table 2. Aggregation functions. The aggregation functions and the corresponding 

aggregated message for node 𝑢 at 𝑘𝑡ℎ layer. 
Aggregator 𝛢𝑖 ∙  𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 

Mean 𝑀𝑒𝑎𝑛 𝑋   𝔼[𝑋] 𝑀𝑒𝑎𝑛𝑢 𝑋
𝑘   

 

𝑑𝑢

∑ 𝑋𝑣
𝑘

𝑣∈𝑁 𝑢 

 

Sum 𝑆𝑢𝑚 𝑋   ∑𝑋 𝑆𝑢𝑚𝑢 𝑋
𝑘  ∑ 𝑋𝑣

𝑘

𝑣∈𝑁 𝑢 

 

Max 𝑀𝑎𝑥 𝑋   𝑚𝑎𝑥 𝑋  𝑀𝑎𝑥𝑢 𝑋
𝑘   max

𝑣∈𝑁 𝑢 
𝑋𝑣

𝑘 

Min 𝑀𝑖𝑛 𝑋   𝑚𝑖𝑛 𝑋  𝑀𝑖𝑛𝑢 𝑋
𝑘   min

𝑣∈𝑁 𝑢 
𝑋𝑣

𝑘 

Std 𝑆𝑡𝑑 𝑋   √𝔼[𝑋2] −  𝔼[𝑋] 2 𝑆𝑡𝑑𝑢 𝑋
𝑘  √𝑀𝑒𝑎𝑛𝑢(𝑋

𝑘2
) − 𝑀𝑒𝑎𝑛𝑢 𝑋

𝑘 2 
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