
Multiscale Attention Wavelet Neural Operator for Capturing Steep Trajectories in
Biochemical Systems

Jiayang Su1, Junbo Ma2,3*, Songyang Tong1, Enze Xu4, Minghan Chen4†

1Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin 541000, China
2School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

3Lishui Institute of Hangzhou Dianzi University, Hangzhou Dianzi University, Hangzhou 310018, China
4Department of Computer Science, Wake Forest University, NC 27109, USA

sujiayang2000@gmail.com, nudt mjb@outlook.com, songyangt60@gmail.com, xezpku@gmail.com, chenm@wfu.edu

Abstract
In biochemical modeling, some foundational systems can ex-
hibit sudden and profound behavioral shifts, such as the cel-
lular signaling pathway models, in which the physiological
responses promptly react to environmental changes, result-
ing in steep changes in their dynamic model trajectories.
These steep changes are one of the major challenges in bio-
chemical modeling governed by nonlinear differential equa-
tions. One promising way to tackle this challenge is convert-
ing the input data from the time domain to the frequency
domain through Fourier Neural Operators, which enhances
the ability to analyze data periodicity and regularity. How-
ever, the effectiveness of these Fourier based methods dimin-
ishes in scenarios with complex abrupt switches. To address
this limitation, an innovative Multiscale Attention Wavelet
Neural Operator (MAWNO) method is proposed in this pa-
per, which comprehensively combines the attention mecha-
nism with the versatile wavelet transforms to effectively cap-
ture these abrupt switches. Specifically, the wavelet transform
scrutinizes data across multiple scales to extract the charac-
teristics of abrupt signals into wavelet coefficients, while the
self-attention mechanism is adeptly introduced to enhance the
wavelet coefficients in high-frequency signals that can better
characterize the abrupt switches. Experimental results sub-
stantiate MAWNO’s supremacy in terms of accuracy on three
classical biochemical models featuring periodic and steep tra-
jectories. https://github.com/SUDERS/MAWNO.

Introduction
Biochemical modeling serves as a vital tool for unravel-
ing the characteristics of biological processes, providing in-
sights into essential cellular mechanisms and behaviors. In-
triguingly, some foundational systems are marked by steep
and dramatic changes in their dynamic trajectories—a phe-
nomenon that shapes critical events in biology. For instance,
cellular signaling pathways can exhibit abrupt switches that
drive cells from quiescence to rapid proliferation or initiate
critical defense responses. Illustrating this phenomenon, the
Mitosis-Promoting Factor (MPF) model (Novak and Tyson
1993) elucidates how the abrupt changes of proteins regu-
late the progression of the cell through different phases of
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the cell cycle. In Fig. 1, the concentration of cyclins rises
dramatically, causing an increase in the activity of cyclin-
dependent kinases (CDKs). This surge in MPF activity trig-
gers the cell’s entry into mitosis, the intricate process of cell
division. Similarly, the Brusselator model (Prigogine 1978)
demonstrates the sharp transitions between chemical oscilla-
tions and quiescence, underscoring the importance of com-
prehending and representing such shifts in dynamic systems.
A fundamental challenge in this endeavor revolves around
solving differential equations, particularly ordinary differen-
tial equations (ODEs), which form the backbone of dynamic
system analysis. Traditional approaches often resort to nu-
merical techniques like Euler’s method (Hildebrand 1987)
and Runger-Kutta method (Forsythe et al. 1977), discretiz-
ing the ODE into iterative computations of difference equa-
tions to approximate continuous solutions. Although these
methods have provided a solid foundation, they still face
limitations in capturing the sudden and profound behavioral
shifts that characterize certain biological systems.
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Figure 1: Illustration of Mitosis-Promoting Factor (MPF)
model shows a cell undergoing sudden and pronounced
changes in the trajectory of cyclin and MPF levels. This
abrupt shift triggers the cell to enter mitosis (cell division).

In recent years, the advancement in machine learning
techniques offers a refreshing perspective on solving dif-
ferential equations, introducing innovative tools that adapt

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15100



to the complexities inherent in biochemical systems. At
the forefront of this revolution are Physics-Informed Neu-
ral Networks (PINNs) (Raissi, Perdikaris, and Karniadakis
2019). By integrating physics knowledge into neural net-
works, PINN has become a data-efficient approach to solv-
ing ODEs of complex systems and has been sought after
since its introduction due to its straightforward theory and
easy-to-replicate architecture. Complementing this, Deep-
ONet (Lu et al. 2021a) employs neural operators based on
the generalized approximation theorem, presenting a data-
driven strategy that excels in accuracy and flexibility. With
its deeper network layers and adaptable architecture, Deep-
ONet displays reduced errors and a capacity to tailor net-
work structures for specific problem characteristics.

One notable advancement is the Fourier Neural Opera-
tor (FNO) (Li, Kovachki, and Azizzadenesheli 2021). FNO
integrates neural networks with the Fourier transform to
project input data from the time domain to the frequency do-
main. By parameterizing the kernel integral operator within
the Fourier space, this transformation facilitates the extrac-
tion of analytical features and the approximation of non-
linear equations. Another subsequent work is wavelet neu-
ral operator (WNO) (Tripura and Chakraborty 2023). WNO
leverages discrete wavelet transform (DWT) to efficiently
decompose signals, thereby reducing the redundancy and
computational overhead associated with continuous wavelet
transform (CWT) techniques.

The effectiveness of FNO decreases when confronted
with complex scenarios involving abrupt signals with steep
changes in trajectories. This is because the Fourier trans-
form, which utilizes the sine-cosine function as a basis,
is good at mapping one-dimensional, triangular-wave-like
continuous-variable function signals onto a sequence of co-
efficients, but is virtually impotent in the case of abrupt
changes or high-dimensional, non-triangular-wave signals.
In contrast, the wavelet transform projects signals into the
wavelet domain, capturing both frequency and spatial infor-
mation without smoothing the signal in the frequency do-
main as in the case of the Fast Fourier Transform (FFT).
Therefore, WNO is capable of handling steep trajectories
compared to neural operators such as FNO. However, it’s
important to note that as scenarios become more intricate,
with a greater number of mutated signals, WNO’s effective-
ness also experiences a decline.

To enhance the neural network’s ability to approximate
equations featuring steep changes, a novel method called
Multiscale Attention Wavelet Neural Operator (MAWNO) is
proposed, which comprehensively combines wavelet trans-
form with the self-attention mechanism in multiple wavelet
scales. Specifically, the input is decomposed on multiple
wavelet scales to obtain the high-level detail coefficients and
approximate coefficients, which correspond to the signal’s
high-frequency and low-frequency information. Given that
mutated signals predominantly manifest as high-frequency
variations, the self-attention mechanism is strategically ap-
plied to the detail coefficients to capture distant depen-
dencies in sequences. Furthermore, the proposed MAWNO
also adopts the physics-driven approach, utilizing ODEs
and their initial conditions to make predictions without

ground truth data labels. Experimental results substantiate
its supremacy in accuracy when applied to three classical
models featuring periodic and steep trajectories, surpassing
PINN, FNO, and WNO methods. Overall, the salient points
of the proposed MAWNO method are as follows:

• Multiscale Self-Attentive Wavelet Design: We intro-
duce a distinctive wavelet block augmented by multiscale
self-attention to enhance the mutual information from
multiple scales of wavelet decomposition. This can solve
nonlinear differential equations characterized by steep
changes, a challenge that both PINN and FNO failed to
address.

• Efficient Self-Attention Implementation: Self-
attention is strategically applied to the coefficients after
wavelet decomposition rather than to the entire raw sig-
nal, reducing the computational complexity associated
with the attention mechanism.

• Physics-Driven Approach: MAWNO relies on physi-
cal/biochemical equations to establish an input-to-output
mapping without ground truth data labels. This not only
reduces the reliance on real-world data for model training
but also augments the applicability of MAWNO across a
broader spectrum of scenarios.

Related Works
Physics-Informed Neural Networks. PINNs (Raissi,
Perdikaris, and Karniadakis 2019) is a learning framework
to train neural networks with the constraints of physical laws
described by differential equations. Compared with pure
data-driven neural networks, PINN imposes physical infor-
mation as constraints during the training process, so that a
more general model can be learned with fewer data sam-
ples. Physics-Informed Neural Networks with Hard Con-
straints (hPINNs) (Lu et al. 2021b) achieved good results
on reverse design problems by using penalty and augmented
Lagrangian methods to impose hard constraints. To enhance
the accuracy of PINNs further, Gradient-enhanced Physics-
Informed Neural Networks (gPINN) (Yu et al. 2022) include
the gradient information of the partial differential equa-
tions (PDEs) residual into the loss function. Applications of
PINNs extend to diverse fields, including geology (Zheng,
Zeng, and Karniadakis 2020), medicine (Raymond et al.
2022), fluid dynamics (Chen et al. 2022), and materials sci-
ence (Chen et al. 2020), demonstrating their versatility and
utility.

Neural Operators. Neural operators present a potent ap-
proach for solving differential equations through neural
network-based methods, which entails learning nonlinear
mappings between input and output function spaces. By har-
nessing neural operators, we can capture patterns and fea-
tures of input data, and make accurate predictions on new
and unseen data, thereby constructing versatile models. Neu-
ral operators were first introduced in the work of DeepONet
(Lu et al. 2021a), which has been proven to be capable
of approximating diverse nonlinear operators with a suffi-
ciently large network. Building upon DeepONet, physics-
informed DeepONets (Wang, Wang, and Perdikaris 2021)
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Figure 2: (a) MAWNO structure overview: MAWNO is
mainly built from L MAWNO blocks. The U(x) and V (x)
are two fully connected layers that help maintain the signal
dimensions. (b) MAWNO block decomposition: the input
ω(x) is firstly decomposed by wavelet transform W , then
passed to the attention wavelet layer. After that, the inverse
transform W−1 is applied to reconstruct the coefficients
back to the feature domain. Meanwhile, a 1× 1 convolution
operation is performed on ω(x), and the results from two
operations are combined to yield ϕ(x). (c) Wavelet attention
layer of the m-th level: After the signal is decomposed into
multiple levels, APXm (m-level approximation coefficient)
and DETm (m-level detail coefficient) are derived. DET ∗

m
is obtained after applying self-attention to DETm, and then
the two coefficients of APXm and DET ∗

m are convolved
to obtain APX ′

m and DET ′
m, respectively. Finally, APX ′

m
and DET ′

m are reconstructed by wavelet inverse transform.

offers a simpler but more intuitive architecture with accel-
erated training capabilities. FNO (Li, Kovachki, and Aziz-
zadenesheli 2021) learns the operator in the spectral domain
using the Fast Fourier Transform (FFT), achieving a good
balance between computational efficiency and analytical ac-
curacy. Another contribution of FNO is that it can perform
zero-shot super-resolution, that is, train at a lower resolu-
tion and evaluate at a higher resolution. As variants of FNO,
MultiWavelet Transform (MWT) (Gupta, Xiao, and Bog-
dan 2021) and Wavelet Neural Operator (WNO) (Tripura
and Chakraborty 2023) utilize the wavelet transform to pro-
cess signals. WNO outperforms FNO and MWT on complex
PDEs.

Beyond differential equations, neural operators find appli-
cations in diverse domains. Adaptive Fourier Neural Oper-
ators (AFNO) (Guibas et al. 2022) extends neural operators
to the image domain.

Method
Problem Formulation
In this work, we consider ODEs in the bounded domain D,
e.g., [0, T ], D ∈ Rd and the function space H over D, in-
cluding boundary shapes and source functions. And our goal
is to learn an operator N from the input function space A
to the solution space H, i.e., N : A → H. The A space
can contain boundary conditions, initial points, differential
equations, etc. We define an operator N that maps A space
functions to H space. Assuming u ∈ A, s ∈ H, the operator
N can be expressed as N [ui;λ] = si, i ∈ [0, N ] , where
λ ∈ Θ is the parameter space for the neural network to learn
the N operator mapping A → H and D is a subset of Rd.

Our goal is to learn the operator by minimizing the loss
function that combines the known initial value u(0) and the
ODE formula: Loss = Lossu(0) + Lossf . Here Lossu(0)
aims to anchor the output to the initial condition of the ODE,
while the Lossf is a residual loss between the derivative
form of the ODEs and the neural network’s outputs with
corresponding derivatives through automatic differentiation.
Minimizing Lossf will force the neural network to obey the
constraints of the ODEs without additional data labels.

MAWNO Structure
The overall structure of MAWNO is shown in Fig. 2. The
inputs are first projected into an embedding space through
a fully connected layer and then fed into several MAWNO
blocks. The MAWNO block is the basic built block of the
proposed method, see Fig. 2 (b). The input of the MAWNO
block is decomposed into wavelet coefficients by wavelet
transform and then passed to the Attention wavelet layer
for further processing. Also, the input of MAWNO is sub-
jected to a convolution operation with a convolution kernel
of 1 × 1 size. Since wavelet transform is an effective time-
frequency analysis method, the time and frequency features
can be effectively extracted. The 1 × 1 convolution kernel
aims to linearly combine the features of different channels,
thus achieving cross-channel feature fusion and adding non-
linear features, which helps learn more complex feature rep-
resentations. As shown in Fig. 2 (c), the input is decomposed
into m levels by wavelet transform, where the lower level
wavelet coefficients usually contain a lot of useless informa-
tion such as noise, while the useful information is contained
in the higher level wavelet coefficients. The m-th level
wavelet coefficients consist of detail coefficients DETm
and approximation coefficients APXm. The self-attention
is strategically applied on DETm, which allows the neural
network to consider and correlate the ever-changing high-
frequency information in the whole signal.DETm performs
self-attention to obtain DET ∗

m, and the convolution oper-
ation is performed on DET ∗

m and APXm to analyze the
inputs at multiple scales and extract the features of the in-
puts, in particular extracting the high-frequency information
in DET ∗

m. Thus enhancing the ability of MAWNO to ap-
proximate biochemical models with sharply varying trajec-
tories.

Wavelet Transform. Wavelet transform is a time-
frequency analysis method of signals. It has the character-
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istics of multi-resolution analysis, and can characterize the
local characteristics of signals in time-frequency domains.
It can perform localized analysis of time (space) and fre-
quency, and gradually perform multi-scale refinement of sig-
nals (functions) through stretching and translation opera-
tions. Therefore, it can focus on any details of the signal
(Torrence and Compo 1998; Cotter 2019).

The wavelets represent sets of functions that result from
dilation and translation from a single function, often termed
as ‘mother function’, or ‘mother wavelet’. For a given
mother wavelet ψ(x), the resulting wavelets are written as,

ψa,b(x) =
1

|a|1/2
ψ

(
x− b

a

)
,

a, b ∈ R, a ̸= 0, x ∈ D

(1)

where a, b are the dilation, translation factor, respectively,
and D is the domain of the wavelets under consideration.
Let W and W−1 be the forward and the inverse wavelet
transform of an arbitrary function Γ : D → Rd. Then,
(Γw)j (a, b) = (WΓ)j(a, b)ψ((x − b)a) ∈ L2(R) is called
the daughter wavelet, which is obtained by shifting and scal-
ing of the mother wavelet ψ(x).

Wavelet neural operator. As shown in Fig. 2 (b), the in-
put data u(t) passes through the fully connected layer U(x)
to map the features to a higher-dimensional space. This pro-
cess aids the model in capturing complex patterns and re-
lationships in the data, resulting in v0(t). The v0(t) serves
as the input of the next layer, the MAWNO block layer. Af-
ter passing through the L MAWNO blocks, the final output
vL(t) is obtained, as v1 7→ . . . vj 7→ . . . 7→ vL. The data
dimension is then reduced back to its original shape through
the fully connected layer V (x). The neural operator N (·)
can be formulated as,

N :=V ◦ σ (GLvL(t) +KL +BL) ◦
· · · ◦ σ (G1v1(t) +K1 +B1) ◦ U

(2)

where σ is a fixed nonlinear activation function enhancing
the nonlinear expression ability of the neural network, G is
a linear transformation, B is the deviation of the neural net-
work, and K is the kernel integral operator. By parameteriz-
ing K in the neural network to learn the neural operator N .
The kernel integral operator K is defined as follows,

(K(u) ∗ vj) (t) :=
∫
D

k(u(t))vj(t)dt,

t ∈ D, j ∈ [1, L]

(3)

The convolution theorem, as articulated by Bracewell in
1966 (Bracewell and Kahn 1966), establishes that the act
of convolving two signals in the time domain is equiva-
lent to multiplying their respective Fourier transforms in the
frequency domain. Conversely, convolving two signals in
the frequency domain is tantamount to the multiplication of
their inverse Fourier transforms in the time domain. Conse-
quently, following the application of the convolution theo-
rem to our kernel integral operator K, we rewrite Eq. (3) as
a wavelet neural operator:

(K(u) ∗ vj) (t) =W−1 (W (kϕ) ·W (vj)) (t), t ∈ D. (4)

where W and W−1 denote the wavelet transform and
wavelet inverse transform, respectively, and we omit the sub-
scripts K,W to simplify the equation.

Multiscale Wavelet Attention
The standard self-attention mechanism is applied to the de-
tail coefficients at the highest level of wavelet decomposi-
tion. Suppose there are 3 sequences Q,K, V , which are de-
fined as follows,

Q = DETm ∗WQ,

K = DETm ∗WK ,

V = DETm ∗WV .

(5)

where WQ,WK ,WV are learnable parameter matrices,
defining the attention formula,

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (6)

Combining Eqs. (5) and (6) , DET ′
m can be easily obtained:

DET ′
m = Attention(Q,K, V ) (7)

The main idea of Self-attention (SA) is to allow the
model to automatically learn the association and impor-
tance between different positions based on the informa-
tion at different positions in the input sequence (Vaswani
et al. 2017). Addressing the shortcomings of traditional Re-
current Neural Networks (RNN) and Convolutional Neu-
ral Networks (CNN) that usually only focus on local in-
formation, SA is able to take into account the information
of the whole sequence at the same time, thus better cap-
turing long-distance dependencies in the sequence. Com-
bining the attention mechanism with other methods is a
popular research, such as AEC-LSTM (Huang et al. 2021).
Our proposed MAWNO innovatively applies self-attention
to wavelet transformation. The input signal is decomposed
into m levels through discrete wavelet transform (DWT).
Each decomposition will produce a pair of approximate co-
efficients and detail coefficients. The detail coefficients con-
tain high-frequency features, and the approximate coeffi-
cients contain low-frequency features. Usually, the lower-
level high-frequency signal is composed of noise, and the
higher-level wavelet coefficients contain the most critical in-
formation of the entire signal. Applying the self-attention
mechanism to the detail coefficientDETm after wavelet de-
composition m level in the wavelet domain can capture the
correlation between the detail coefficients, and enhance the
neural network’s ability to approximate equations featuring
steep changes.

Experiments and Results
Experimental Settings
The effectiveness of the proposed MAWNO is validated
through a series of experiments and compared with three
state-of-the-art methods, namely, PINN, FNO, and WNO:
• PINN (Raissi, Perdikaris, and Karniadakis 2019):

Physics-Informed Neural Network uses neural networks
to solve mathematical equations infused with physical
principles. This method is valued for its simplicity and
efficiency.
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Figure 3: Top row: ground truth (LSODA solver, solid lines) and predicted trajectories (MAWNO, dashed lines) of three
biochemical models, including (a) Goodwin, (b) Brusselator, and (c) MPF. Bottom row: the box plot of NMSEs obtained by
PINN, FNO, WNO, and MAWNO, across five independent experiments. The red cross sign indicates cases of failure that
deviate significantly from the ground truth.

• FNO (Li, Kovachki, and Azizzadenesheli 2021): Fourier
Neural Operator processes signals in spectral space, ren-
dering its learning approach effective.

• WNO (Tripura and Chakraborty 2023): Wavelet Neural
Operator, an extension of FNO, projects the signal into
the wavelet domain and parameterizes the wavelet neural
operator to solve PDEs.

MAWNO uses sym9, sym9, and db6 as wavelet bases for
Goodwin, Brusselator, and MPF, respectively. Wavelet ba-
sis is the basic function used to decompose and reconstruct
signals. Different types of wavelet bases have different fre-
quency and scale characteristics, which can be used to cap-
ture different frequency components and characteristics of
signals. We choose Daubechies family (Daubechies 1992)
and Symlet family (Meyer 1993) wavelets as wavelet base
functions of MAWNO. The number of wavelet decompo-
sition layers m is 8 for all three biochemical models. The
wavelet level indicates the number of input wavelet decom-
position layers. The higher the number of layers, the stronger
the ability to capture high-frequency signals, but it will also
increase the computational complexity, and an excessively
high number of layers will increase the risk of model over-
fitting. The number of MAWNO blocks is set to 4. MAWNO
block depth represents the number of MAWNO blocks in the
model. If the number is too small, it will lead to underfitting,
and if the number of layers is too deep, it will increase the
difficulty of model training. All models are trained with the
Adam (Kingma and Ba 2015) optimizer that adaptively op-
timizes the learning rate. We uniformly sampled 213 sample
points for Goodwin, Brusselator, and MPF, and trained them
for 50000, 200000, and 500000 epochs, respectively.

The Normalized Mean Square Error (NMSE) is utilized as
the evaluation metric. NMSE is a normalized form of mean

square error, which normalizes the MSE value to a certain
range, making it easier to compare the performance of dif-
ferent systems. The relative error of NMSE is calculated as:

NMSE(%) =
1

N

N∑
i=1

∥u′i − ui∥2
∥ui∥2

× 100% (8)

where ∥ ·∥2 is the 2-norm, N is the total number of samples,
and u′i is the prediction of the ground truth ui.

All four methods are evaluated on three classical bio-
chemical models featuring periodic and steep trajectories,
including Goodwin, M-phase Promoting Factor (MPF), and
Brusselator.

Trajectory Prediction of Biochemical Systems
Goodwin (Goodwin 1965): The Goodwin model eluci-
dates the rhythmic behavior exhibited by various biological
systems, including the circadian clock, cell cycle, and seg-
mentation clock. The model comprises three equations de-
lineating the dynamics of a gene, its corresponding mRNA,
and the resultant protein. An inhibitory relationship is es-
tablished wherein the protein suppresses gene expression,
manifesting a negative feedback loop. Renowned for its sim-
plicity and widespread adoption, the Goodwin model is a
cornerstone in the realm of biological oscillations. The cor-
responding ordinary differential equations are given below.

dX1

dt
=

a1
A1 + k11Y1 + k12Y2

− b1

dY1
dt

= a1X1 − β1

dX2

dt
=

a2
A2 + k21Y1 + k22Y2

− b2

dY2
dt

= a2X2 − β2
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The experimental results are shown in Fig. 3 (a). The
trajectories predicted by our MAWNO align well with the
ground truth obtained using the ODE solver (LSODA). It
can be seen that FNO, WNO, and MAWNO perform con-
sistently on the Goodwin system, yielding remarkably low
NMSE at approximately 1.3×10−6. In contrast, PINN’s ac-
curacy ranges from 1× 10−5 ∼ 5× 10−5, and its variances
fall short in comparison to the other three models.

Brusselator (Prigogine 1978): The Brusselator is de-
signed to study auto fluctuations and spatial structure forma-
tion in nonequilibrium systems. The model can form sharp
oscillatory patterns marked by abrupt transitions between
high and low concentrations in a periodic cycle. Its relevance
extends to diverse natural phenomena like biochemical reac-
tions, nonlinear optics, and electrochemical reactions, con-
tributing to our understanding of many non-equilibrium sys-
tems in nature. In our experiments, we use the Brussela-
tor constant differential formulation from (Lozano-Parada,
Burnham, and Machuca Martinez 2018), given as follows.

d(X)

dt
= A−B ·X +X2 · Y −X

d(Y )

dt
= B ·X −X2 · Y

In Fig. 3 (b), PINN fails to predict the Brusselator model,
underscoring its ineffectiveness for systems characterized by
high complexity and sharpness. Among the evaluated meth-
ods, MAWNO achieves the smallest NMSE values within
the range of 2×10−6 ∼ 4×10−6. Following MAWNO, FNO
shows a slightly higher NMSE of approximately 2 × 10−5,
albeit with reduced variance. WNO’s performance is less ro-
bust compared to MAWNO and FNO, yielding an NMSE
range of 1× 10−5 ∼ 1× 10−4.

MPF (Novak and Tyson 1993): M-phase Promoting Fac-
tor is a heterodimer composed of the Cdc2 protein and cell
cycle proteins. These MPF complexes play important roles
in regulating cell division at different stages of the cell cycle.
The MPF model investigates the interactions between cdc2
and cyclin to reveal their dynamic behaviors and regulatory
mechanisms in the cell cycle. These studies are of great sig-
nificance for the in-depth understanding of cell cycle regula-
tion, the precise control of cell division, and the fundamental
mechanisms of cell biology. The dynamic system of MPF is
described below.

dU

dt
=
k′1
dt

− [k2(U) + kWee] · U + k25(U) ·
(
V

G
− U

)
dV

dt
= k′1 − k2(U) · V

k2(U) = k′2 + k′′2U
2

k25(U) = k′25 + k′′25U
2

In Fig. 3 (c), the MPF system showcases remarkably
steep trajectories culminating in a sharp apex. MAWNO dis-
tinctly stands out, as its predicted paths align consistently
with the ground truth. This exceptional alignment illustrates
MAWNO’s capacity to adeptly manage systems with sub-
stantially higher complexity and sharpness. In contrast, nei-
ther PINN nor FNO proves effective in this case. While

WNO achieves an NMSE span of 2 × 10−5 ∼ 5 × 10−5,
MAWNO surpasses this with an NMSE ranging from 2 ×
10−7 ∼ 1× 10−6, one order of magnitude improvement.

Performance Analysis on Varying Steepness
To validate the effectiveness of MAWNO in handling equa-
tions characterized by steep trajectories, we carried out a
comparative assessment involving PINN, FNO, WNO, and
MAWNO. This evaluation was performed on the Brussela-
tor model by systematically changing the parameters to vary
the degree of the trajectory’s steepness, as depicted in Fig. 4.
Evidently, PINN fails in all four cases of different steepness
levels. In Fig. 4 (a) and 4 (b), where the Brusselator system
displays smooth and moderate dynamics, the accuracy of
MAWNO is akin to those of FNO and WNO. As the trajec-
tory becomes steeper, the advantages of MAWNO become
prominent. As shown in Fig. 4 (c) and (d), MAWNO outper-
forms FNO and WNO by a significant margin. The culmi-
nation of these four experiments with increasing steepness
underscores MAWNO’s superior aptitude in effectively ad-
dressing dynamical systems characterized by abrupt changes
in trajectories.

Parameter Sensitivity Experiments
The parameter sensitivity experiments are done on the Brus-
selator model. Fig. 5 (a-c) shows the effect of different
wavelet decomposition layers m, different wavelet bases,
and dataset sizes in terms of NMSE and training duration.
As n increases in wavelet basis sym n, the length of wavelet
basis support moments increases. The experimental results
show that larger decomposition layers m, longer support
moments, and larger dataset size increase the training time
length. So combining the accuracy and time consumption,
the suitable parameters are chosen.

Additionally, we investigate the impact of varying the
number of layers within the MAWNO block, see Fig. 5 (d).
Employing a single layer or two layers for the MPF model
yielded unsuccessful results. It can be seen that as the num-
ber of layers increases, the NMSE decreases until a nadir.
After reaching the fourth layer, the NMSE starts to rise. This
is likely due to the network’s depth becoming excessively
profound, thereby contributing to the model’s degradation.

Discussion
The experimental results demonstrate MAWNO’s superi-
ority as a powerful and versatile approach. Its impressive
adaptability and the lowest NMSE error among the four
methods establish MAWNO as the top choice for a diverse
spectrum of biochemical systems, from simple to complex,
setting new standards for precision and efficiency in solving
differential equations in biochemical modeling.

The limitations of PINN stem from its simplistic neural
network architecture, rendering it less effective in address-
ing the intricacies of complex systems. FNO encounters dif-
ficulties when confronted with steep trajectories, which hin-
ders its overall performance. WNO exhibits advantages over
both FNO and PINN in navigating abrupt dynamic changes,
allowing it to excel in the challenging MPF model where
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Figure 5: Parameter sensitivity experiments (a-c) on the
Brusselator model: NMSE and training time (blue line) with
varying numbers of wavelet decomposition layer m (a),
types of wavelet basis (b), and sizes of training data (c).
Experiment (d) shows the NMSE values and training time
of the MPF model under different numbers of MAWNO
blocks. The training time remains consistent across differ-
ent random seeds.

FNO and PINN fail. However, it is crucial to note that WNO
comes with a trade-off, as it carries a higher NMSE com-
pared to the more precise MAWNO. Furthermore, when
dealing with moderately complex models like the Brusse-
lator, MAWNO proves to be more effective than WNO. This
highlights MAWNO’s versatility across a wide range of sce-
narios as well as higher precision when compared to WNO.
MAWNO prevails as a robust solution capable of handling
not only simple and smooth models, but also sharp and com-

plex ones with remarkable accuracy.

Conclusion
In this paper, a novel Multiscale Attention Wavelet Neural
Operator (MAWNO) method is proposed to tackle the chal-
lenge of abrupt switches in biochemical systems described
by nonlinear differential equations. The proposed MAWNO
comprehensively combines the self-attention mechanism
with the versatile wavelet transforms to enhance the mul-
tiscale coefficients obtained from multiple levels of wavelet
decompositions, capturing the fine-grained and distant in-
formation in the input signals. Moreover, MAWNO is also
a physics-driven approach that can efficiently exploit bio-
chemical equations to establish an input-to-output mapping
without ground truth data labels. Extensive experiments
demonstrate the effectiveness of the proposed MAWNO on
three representative biochemical models featuring periodic
and steep trajectories, surpassing the state-of-the-art meth-
ods in terms of accuracy.
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