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ABSTRACT

Symbolic regression (SR) is a powerful technique for discovering the analytical mathematical ex-
pression from data, finding various applications in natural sciences due to its good interpretability
of results. However, existing methods face scalability issues when dealing with complex equations
involving multiple variables. To address this challenge, we propose SRCV, a novel neural symbolic
regression method that leverages control variables to enhance both accuracy and scalability. The core
idea is to decompose multi-variable symbolic regression into a set of single-variable SR problems,
which are then combined in a bottom-up manner. The proposed method involves a four-step process.
First, we learn a data generator from observed data using deep neural networks (DNNs). Second, the
data generator is used to generate samples for a certain variable by controlling the input variables.
Thirdly, single-variable symbolic regression is applied to estimate the corresponding mathematical
expression. Lastly, we repeat steps 2 and 3 by gradually adding variables one by one until comple-
tion. We evaluate the performance of our method on multiple benchmark datasets. Experimental
results demonstrate that the proposed SRCV significantly outperforms state-of-the-art baselines in
discovering mathematical expressions with multiple variables. Moreover, it can substantially reduce
the search space for symbolic regression. The source code will be made publicly available upon
publication.

1 Introduction

Symbolic regression (SR) aims to uncover the underlying mathematical expressions from observed data [16, 9]. It
has been widely used for scientific discovery across various disciplines [1, 29] owing to its ability to learn analytical
expressions between the input and output. The implementation of SR involves two steps [15]. The first step is to predict
the skeleton of mathematical expressions based on a pre-defined list of basic operations (+,−,×,÷) and functions
(sin, cos, exp, log). For instance, we can identify the skeleton of a symbolic equation as f(x) = log ax+ sin(bx) + c.
Next, we adopt optimization methods, such as Broyden–Fletcher–Goldfarb–Shanno (BFGS), to estimate the parameters
a, b, c in the skeleton. The key challenges of SR lie in: 1) how to improve the accuracy and scalability for multiple
input variables, and 2) how to speed up the discovery process.

In the past few decades, a plethora of SR methods [22] have been developed to discover underlying mathematical
equations from data in science and engineering domains. One popular approach among them is genetic programming
(GP) [4, 7, 27, 10, 2], which uses evolutionary operations, such as mutation, crossover, and selection, to estimate the
symbolic expressions in a tree structure. However, GP would suffer from instability and its inference time is expensive
in the context of multiple input variables [15]. Another method, SINDy [5], adopts sparse linear regression to discover
the governing equations of dynamical systems. However, SINDy’s performance relies heavily on prior knowledge of
a known set of candidate functions, and it is difficult to uncover complex equations from data solely through linear
regression. To overcome these limitations, some studies explore deep neural networks-based techniques, such as
Deep Symbolic Regression (DSR) [25] and Transformer-based pre-training, for symbolic learning. Although these
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Figure 1: The overall framework of SRCV, consisting of three main components: i) learn a data generator using
DNNs; ii) generate data for each independent variable via control variables; iii) apply single-variable SR to estimate the
mathematical equation for the current independent variable.

approaches obtain good prediction accuracy, they do not scale well to mathematical equations with multiple variables.
Recently, researchers develop Symbolic Physics Learner (SPL), a physics-informed Monte Carlo Tree Search (MCTS)
algorithm for symbolic regression. While SPL outperforms most GP-based methods, it still struggles with multiple
variables in mathematical expressions. In summary, existing methods suffer from scalability issues when dealing with
complex multi-variable equations as they require a much larger search space to identify the combination of different
variables. Thus, the question is, how can we reduce the search space of symbolic regression for complex equations
involving multiple variables?

In this paper, we propose a novel neural symbolic regression with control variables (SRCV) that combines neural
networks and symbolic regression to discover analytical expressions from data, as illustrated in Fig. 1. Inspired by
divide and conquer [26], SRCV addresses the multi-variable symbolic regression by decomposing it into a set of
single-variable SR problems and then combines the estimated symbolic equation for each variable in a bottom-up
manner. The proposed method is performed in four steps as follows. 1) We learn a data generator from observed data
using DNNs, allowing for generating data for a specific variable. 2) Generate data via control variables. Specifically, we
generate data samples for the current independent variable by manipulating the previously learned variables and other
control variables. For example, for estimating the symbolic expression of variable xi, we can generate data samples
by varying xi while fixing the other variables. 3) Single-variable symbolic regression is employed to estimate the
mathematical expression of the current variable based on the generated data in step 2. Here any symbolic regression
models can be inserted into the framework. 4) We gradually add the remaining variables one by one to step 2 and
proceed with step 3 until all the variables are covered. Extensive experimental results on multiple SR benchmarks
demonstrate the superiority of our SRCV over the state-of-the-art methods in discovering complex multi-variable
equations. Moreover, the proposed approach is able to discover complex expressions in a reduced search space.

Our main contributions are three-fold: 1) we propose SRCV, a simple and effective neural symbolic regression method
using control variables; 2) we illustrate that the proposed method exhibits a significant reduction in search space for
complex symbolic equations; 3) the evaluation results demonstrate that our method can significantly outperform the
baselines in terms of accuracy and inference time.

2 Related Work

GP-based Symbolic Regression. Genetic Programming (GP) is one of the most popular algorithms for symbolic
regression. The basic idea is to adopt the evolutionary operations, including mutation, crossover, and selection, to
iteratively estimate the mathematical expressions until the desired accuracy is achieved. As a typical representative,
the commercial software Eureqa [11] has been widely used in real-world applications. A recent study [23] combined
genetic programming with reinforcement learning to enhance performance. While GP yields satisfactory results in
many scenarios, it does not scale well to multiple input variables and is highly sensitive to hyperparameters [24].

DNNs-based Symbolic Regression. Some studies have employed DNN techniques [19, 18, 20] to discover symbolic
equations from data. Early approaches proposed to replace the activation functions in DNNs with some basic functions
like “sin(.)”, “cos(.)”, and “exp(.)”. This substitution may lead to training instability and exploding gradient issues.
Recently, AI-Feynman [31, 30] was developed to decompose the process of finding an equation into a flow based on
the assumption of known physical properties. However, this method relies heavily on prior physics knowledge, such
as symmetries or invariances. A more recent approach, Deep Symbolic Regression (DSR) [24], combined recurrent
neural networks (RNN) with reinforcement learning for symbolic regression. Despite outperforming many GP-based
approaches, DSR struggles with equations that contain multiple variables and constants.
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Tree-based Symbolic Regression. Furthermore, a few recent studies proposed Monte Carlo tree search (MCTS) [6, 8,
21, 29] for symbolic regression. The MCTS is performed in the following four steps: 1) selection, 2) expansion, 3)
simulation, and 4) backpropagation. It takes advantage of the trade-off between exploration and exploitation to better
discover mathematical expressions. For instance, a most recent work developed Symbolic Physics Learner (SPL) [29]
to accelerate discovery based on prior physics knowledge. However, SPL does not scale well to mathematical equations
with many variables.

Pretraining-based Symbolic Regression. Inspired by large language models, researchers also adopted a pre-training
technique based on Transformer [33, 17, 3] for the discovery of symbolic equations. For example, Biggio et al. [3]
developed a large scale pre-training model for symbolic regression. To overcome the ill-posed problem in skeleton
prediction, recent work developed an end-to-end (E2E) symbolic regression by training Transformer on a large amount
of synthetic data. However, Transformer-based symbolic regression requires a ton of training data, which is not practical
in real world applications. Moreover, it does not scale well to high-dimensional functions with many variables.

3 Proposed Method

In this section, we first state the problem of symbolic regression, and then elaborate on the proposed SRCV. A walk-
through example is provided to enhance the understanding of our approach. Furthermore, we study how the proposed
method effectively reduces the search space in symbolic regression.

3.1 Problem Statement

Given a set of N data samples D = {x(n), y(n)}Nn=1, where x(n) ∈ Rd and y(n) ∈ R. Here d denotes the dimension
of input data. The goal of symbolic regression is to learn an analytical mathematical expression, y = f(x) =
f(x1, x2, . . . , xd), based on observed data D.

3.2 Proposed SRCV

To improve the accuracy and scalability for multi-variable SR, we propose a novel neural symbolic regression with
control variables (SRCV) to decompose it into a set of single-variable SR problems. The key idea is to learn a data
generator from observed data using DNNs, and then use it to generate data samples by manipulating an independent
variable each time. After that, we estimate the symbolic equation of the current variable based on its generated samples
and then combine the discovered equations by adding variables one by one. Fig. 1 shows the overall framework of
the proposed SRCV, which consists of three main parts: i) data generator with DNNs; ii) data generation via control
variables; iii) single-variable symbolic regression (SR). Below, we will describe these three components in detail.

Data Generator with DNNs. In many real-world applications, we only obtain the data samples from multiple input
variables, rather than from a single control variable. In order to control data generation for a single variable, we first
need to learn a data generator using deep neural networks (DNNs). After learning the mapping function between the
input and output, f(x1, x2, . . . , xd), we can manipulate the input variables to generate different data samples as needed.
For instance, we can vary variable x1 while keeping the other variables fixed to generate data for x1, i.e., fx2,...,xd

(x1).

Data Generation via Control Variables. For this part, we aim to generate different data samples by controlling the
input variables. As mentioned earlier, our goal is to decompose multi-variable SR into a set of single-variable SR
problems. Suppose that we have learned a symbolic equation of the prior i variables, denoted by x≤i (i = 1, 2, . . . ).
Next, we will estimate the mathematical equation of a newly added variable xi+1. To achieve this, we use the above
data generator to generate K groups of data samples for the current variable xi+1. For each group, we will generate M
data samples via varying the previously learned variables, i.e., x≤i, given a specific value of xi+1, as shown in Fig. 2.
Specifically, we randomly assign M different values to x≤i while keeping other control variables x≥i+2 fixed and
assigning a value to xi+1. Then they will be fed into the data generator, denoted by fx≥i+2

(x≤i, xi+1), to produce M

samples for a given xi+1. Here we use Fk to represent the k-th group of samples for xi+1, and Xk to represent different
values of previously learned variables x≤i. By randomly choosing K different values for xi+1, we can generate K
groups of data samples F = {Fk}Kk=1. Our next step is to perform single-variable symbolic regression to estimate the
expression of xi+1 based on the generated samples.

Single-Variable Symbolic Regression. We propose single-variable SR to predict the mathematical expression for the
current independent variable xi+1. The key idea is to estimate the coefficients in the skeleton of previously learned
variables, e.g., fx≥i+1(x≤i) = C1xi + C2xi−1x1 + · · · + Cj , using the generated samples of xi+1. As illustrated
in Fig. 3, our approach is performed in two steps. (1) We adopt optimization techniques, such as BFGS, to estimate
K groups of coefficients CK = {Ck

1 , . . . , C
k
j }Kk=1 in the skeleton using K groups of data samples {Fk}Kk=1 and
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Figure 2: The framework of data generation with control variables. Specifically, we generate a group of data points for
a newly added variable xi+1 assigned with a random value and then vary the previously learned variables while fixing
other control variables. By choosing K different values for the current variable xi+1, we can generate K groups of data
samples.
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Figure 3: The framework of single-variable SR. It is performed in two steps: 1) we first use an optimization method,
such as BFGS, to estimate K groups of coefficients for the current independent variable; 2) we then use a single-variable
SR model to estimate coefficients in the mathematical equation related to the current variable.

the corresponding values of previously learned variables {Xk}Kk=1. Here, the coefficient Cj in the skeleton can be
viewed as a function of variable xi+1. This step enables us to obtain K groups of data samples CK related to variable
xi+1 by manipulating it with K different values. (2) We then apply symbolic regression to estimate the mathematical
expression about xi+1 given K groups of CK in the first step. Specifically, we feed the coefficient matrix CK and
the corresponding K different values of xi+1 into a symbolic model to estimate its skeleton and the corresponding
coefficients, {C1, . . . , Cj}. Finally, we repeat the above two steps by adding variables one by one until all the variables
are covered.

3.3 A Walk-through Example

To better understand the proposed method, we use a walk-through example to explain its core idea. Take y =

x1x2 + 2x2 + 2 as an example. Given a set of data points {x(n)
1 , x

(n)
2 , y(n)}Nn=1, we first adopt DNNs to learn a

mapping function f(x1, x2) between the input variables x1, x2 and the output y, which will serve as a data generator.
Then we use the data generator to generate different data samples for the independent variable x1 by varying x1

while keeping variable x2 unchanged (e.g., x2 = 2), i.e., fx2
(x1). Next, we leverage a symbolic regression model,

such as GP and MCTS, to estimate the mathematical equation about x1, e.g., we get fx2
(x1) = 2x1 + 6. Since it is

hard to directly derive x2 from the discovered equation fx2(x1), we need to convert it into the following skeleton,
fx2(x1) = C1x1 + C2, where C1 and C2 can be viewed as a function of x2 that need to be estimated later. After that,
we add another independent variable x2 to the data generator f(x1, x2), and then generate M data samples given a
random value of x2, as shown in Fig. 2. By choosing K different values of x2, we can generate K groups of data
samples, denoted by {Fk(x1, x2)}Kk=1. The next step is to use an optimization method, such as BFGS, to estimate
the k-th group of coefficients Ck

1 and Ck
2 in the skeleton fx2

(x1), given Fk(x1, x2) and Xk = [x1,1, x1,2, . . . , x1,M ]⊤.
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Finally, we apply single-variable symbolic regression to estimate the symbolic regression about x2 given K groups of
coefficients {Ck

1 }Kk=1 and {Ck
2 }Kk=1, as shown in Fig. 3. For instance, we can get C1 = x2 and C2 = 2x2 + 2. Since

there are no remaining variables, we complete the process of discovering symbolic equation. If there are additional
variables, we repeat this process to estimate their symbolic expressions until all the variables are covered.

3.4 Reduction of Search Space

We also analyze the relationship between the complexity of a mathematical expression and search space, and then
illustrate that the proposed method can significantly reduce the search space. In this work, the complexity of an
expression is defined below.

Definition 1. Following prior work [25], complexity is defined as twice the number of binary operators {+, −, ×, ÷},
denoted by Nb, plus the number of unary operators {sin, cos, exp, log}, denoted by Nu, in the equation. Mathematically,
the complexity can be formulated as 2Nb +Nu.
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Figure 4: The relationship between complexity and search
space for different methods based on 1000 equations with
different complexity.

The main reason why we define the above complexity
is that it is identical to the number of nodes in an ex-
pression tree minus one. Plus, most existing symbolic
regression and brute force methods often adopt the ex-
pression tree for heuristic searching. Hence, we can
use this metric to measure the difficulty of symbolic
regression.

Fig. 4 shows the relationship between complexity and
search space for our method and the state-of-the-art
MCTS based on 1000 equations with different complex-
ity. Regarding how to sample these equations, please
refer to the detailed description in Appendix A. We can
see from the two black curves search space will rise as
the complexity is increased. Our method can signifi-
cantly reduce the search space for discovering the same
equation compared to the original MCTS in [29]. The
blue dashed line and solid line respectively represent
the brute force and MCTS. We can see that our method
can discover more complex equations under the same
search space for both brute force and MCTS. For exam-
ple, the original MCTS can discover an equation with a
complexity of 16, while our method can estimate an equation with a complexity of 31, as shown in Fig. 4.

3.5 Algorithm Summary

We summarize the proposed method in Algorithm 1. We first learn a data generator from observed data using DNNs
in Line 3. Lines 5-15 aim to generate K groups of data samples F = {Fk}Kk=1 and X = {Xk}Kk=1 by manipulating
the current variable xi+1 with K different values. Then, we use optimization methods to estimate the coefficients
CK in the skeleton based on F and X in Line 16. In Line 17, we apply single-variable SR to estimate the symbolic
equation of xi+1 based on K groups of CK and the current variable. We will repeat this process until all the variables
are completed.

4 Experiment

In this section, we carry out extensive experiments to evaluate the performance of SRCV. We first compare the discovery
rate of our method with state-of-the-art baselines on two SR benchmarks. Next, we apply SRCV to identify the
governing equations of two gene regulatory networks. Finally, we perform ablation studies to explore the impact of
certain hyper-parameters on symbolic regression.

4.1 Datasets

We use two SR benchmark datasets, Nguyen [32] and Jin [14], for the first set of experiments. To illustrate the
effectiveness of our method on complex regression, we specifically select equations containing at least two variables.

5
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Algorithm 1 Proposed SRCV
1: Input: N data samples D = {x(n), y(n)}Nn=1.
2: Initial: Previously learned variables Xv = {} and controlled variables Xc = {x1, . . . , xd}.
3: Learn a data generator using DNNs, f(x1, . . . , xd), based on data D;
4: for i = 0, . . . , d− 1 do
5: Xc ← Xc − {xi+1} // remove one controlled variable;
6: /*Data generation via manipulating the newly added variable xi+1*/
7: Assign random values to controlled variables in Xc;
8: F = {}, X = {}, Xi+1 = {};
9: for k = 1, . . . ,K do

10: Assign a random value to xi+1 for each k;
11: Generate a group of samples Fk for the current variable xi+1; Each group generates M samples about previously learned

variables in Xv , denoted by Xk;
12: F← F+ {Fk};
13: X← X+ {Xk};
14: Xi+1 ← Xi+1 + {xi+1};
15: end for
16: Use optimization methods to estimate the coefficient matrix CK based on K groups of samples F and X;
17: Apply single-variable SR to estimate the symbolic equation of xi+1 based on CK and Xi+1;
18: Xv ← Xv + {xi+1} // add one variable;
19: end for
20: Output: Discover analytical mathematical expression y = f(x).

We also evaluate our method on two gene regulatory networks, including the genetic toggle switch and the repressilator,
using synthetic data. Detailed descriptions of these datasets are presented in Appendix B.

4.2 Baselines

Four baseline approaches are used for comparison with the proposed SRCV.

• Symbolic Physics Learner (SPL) [29]. This method incorporates prior knowledge into Monte Carlo tree search for
scientific discovery.

• Deep Symbolic Regression (DSR) [25]. It combines RL-based search method and recurrent neural networks
(RNN) for symbolic regression.

• Gplearn (GP) [28]. It is a classic genetic programming method implemented in Python.
• Neural-Guided Genetic Programming (NGGP) [23]. It is a hybrid method that combines RNN with GP for

symbolic regression.

4.3 Experimental Setup

In the experiments, we have a pre-defined list of basic operations (+,−,×,÷, const) and basic functions
(sin, cos, exp, log). For SR benchmarks, we generate N = 8000 data samples and then split them into 6400 and
1600 for training and validation, respectively. The proposed SRCV aims to discover the underlying mathematical
expressions from data based on the above two lists of candidate operations. The discovered equations will be compared
with the ground-truth expressions. For the data generator, we use three fully connected layers (MLP) with hidden
sizes of 128, 256, and 128, respectively. Then we train the MLP using Adam optimizer with an initial learning rate
of 0.1 and cosine annealing schedule. In addition, we use a single batch containing all input data due to the small
number of training samples. For single-variable symbolic regression, we choose M = 200 data samples for the current
independent variable with K = 200 different values. Also, we adopt MCTS in the prior work [29] to estimate the
symbolic equation with a single variable. This paper will use these hyperparameters in the following experiments,
unless specified otherwise. Note that we will conduct ablation studies to investigate the impact of some important
hyperparameters on the prediction performance of our method.

Evaluation Metrics. We run 10 independent tests for each case and calculate the recovery rate for each model. A
successful discovery is evaluated using the following two criteria: i) prediction precision and ii) equation equivalence to
ground truth. First, the mean square relative error (MSRE) between the prediction and ground truth should be less than
10−3. Second, the discovered equation should be in an identical or equivalent symbolic form to the target equation. We
manually check the discovered symbolic equations to ensure their correctness.

6
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4.4 Evaluation on SR Benchmarks

First, we evaluate the proposed SRCV on two widely used SR benchmarks: Nguyen and Jin. Table 1 illustrates
the comparison of discovery rate for different methods using 10 random seeds. It can be observed that our method
achieves higher recovery rates than the baselines. This is because the proposed SRCV adopts the similar idea of “divide
and conquer” that decomposes multi-variable SR into a subset of single-variable SR problems. Besides, our method
can significantly reduce the search space of symbolic regression, thus speeding up the discovery. Please refer to the
comparison of computational cost in Appendix D.

Table 1: Recovery rate comparison of the proposed SRCV and other baselines on SR benchmarks, Nguyen and Jin. Our
method significantly outperforms the baselines in terms of the average recovery rate. Note that GP does not work well
since it only learns an approximated equation.

Benchmark Expression SRCV (ours) SPL NGGP DSR GP
Nguyen-09 sin(x) + sin(y2) 90% 100% 40% 30% 20%
Nguyen-10 2 sin(x) cos(y) 90% 70% 100% 100% 90%
Nguyen-11 xy 70% 70% 100% 90% 0%
Nguyen-12 x4 − x3 + 1

2y
2 − y 70% 30% 10% 0% 10%

Jin-1 2.5x4 − 1.3x3 + 0.5y2 − 1.7y 70% 0% 0% 0% 0%
Jin-2 8.0x2 + 8.0y3 − 15 100% 90% 70% 50% 10%
Jin-3 0.2x3 + 1.5y3 − 1.2y − 0.5x 90% 90% 0% 0% 0%
Jin-4 1.5 exp(x) + 0.5 cos(y) 100% 100% 40% 10% 0%
Jin-5 6.0 sin(x) cos(y) 100% 80% 100% 100% 0%
Jin-6 1.35xy + 5.5 sin((x− 1.0)(y − 1.0)) 0% 0% 0% 0% 0%
Average 78% 63% 46% 38% 13%

4.5 Evaluation on Gene Regulatory Networks

Next, we apply the proposed method to discover the underlying governing equations of two classic gene regulatory
networks, the genetic toggle switch and the repressilator.

Genetic toggle switch. The genetic toggle switch [13] is a synthetic gene regulatory network that has been extensively
studied as a fundamental concept in the field of synthetic biology. It has numerous prospective applications in
biotechnology, such as the development of biosensors, gene therapies, and synthetic memory devices. The genetic
toggle switch consists of two mutually repressive genes controlled by their respective promoters, creating a bistable
system that can be toggled between two stable states as follows.

dU

dt
=

α1

1 + V β
− U

dV

dt
=

α2

1 + Uγ
− V ,

(1)

where α1 and α2 are the synthesis rates of repressors U and V , respectively. β and γ are the cooperativities of repression
on two promoters.

In this experiment, following the bistable region in prior work [13], we choose α1 = 4, α2 = 4, β = 3, γ = 3, and the
initial conditions U(0), V (0) ∈ [0, 4]. To train our model, we generate 1000 trajectories by randomly choosing 1000
initial conditions. We use 800 of them as training data and the remaining 200 as validation data. The time span of each
trajectory is t ∈ [0, 1] with a sampling time interval of 0.01. Namely, we sample 100 data points for each trajectory.

Fig. 5 (a) illustrates the predicted trajectories of the genetic toggle switch using SRCV with a random initial condition.
It can be observed that SRCV precisely predicts the trajectory, closely matching the ground truth obtained from the
ODE solver (odeint). The mean square relative error (MSRE) of our method is about 9.03× 10−4. Importantly, our
method successfully discovers the underlying governing equation from observed data as follows. We can see that it is
quite close to the target model in Eqs. 1. We also present the experimental results of the baselines in Appendix F.

dU

dt
=

3.919

0.972 + V 3
− U

dV

dt
=

3.921

0.972 + U3
− V ,

(2)
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Figure 5: Trajectory prediction of the genetic toggle switch and the repressilator using SRCV. The SRCV can precisely
predict their trajectories, closely matching the ground truth.

Repressilator. The Repressilator [12] is another type of gene regulatory network that exhibits oscillatory behavior.
This model is critical in studying the dynamics of genetic circuits and provides insights into the principles of oscillatory
systems in biology. Comprising three genes, it operates through a feedback loop in which each gene produces a
repressor protein that suppresses the expression of the subsequent gene. This process results in a cyclic pattern of gene
expression, described as follows.

dMi

dt
= −Mi +

α

1 + Pn
j

+ α0

dPi

dt
= −β (Pi −Mi)

(
i = lacI, tetR, cI
j = cI, lacI, tetR

)
, (3)

In Eqs. 3, Pi denotes the repressor protein concentrations, and Mi represents the corresponding mRNA concentrations,
where i is lacI , tetR, or cI . If there are saturating amounts of repressor, the number of protein copies produced from a
given promoter is α0. Otherwise, this number is α+ α0. β represents the ratio of the protein decay rate to the mRNA
decay rate, and n is a Hill coefficient.

In this experiment, we set β = 1, α0 = 10−5, α = 10, n = 3, and the initial conditions Mi, Pj ∈ [0, 5]. To train our
model, we generate 5000 trajectories using 5000 random initial conditions. They are split into 4000 training data and
1000 validation data respectively. The time span of each trajectory is t ∈ [0, 4] with a sampling time interval of 0.01.

Fig. 5 (b) illustrates the trajectory predictions of repressilator using our method. We can see that the trajectory predicted
by SRCV closely aligns with the ground truth, with MSRE of about 7.54× 10−5. Additionally, our method successfully
identifies the underlying governing equations, which are provided in Appendix E.

4.6 Ablation Studies

Effect of M in data generation. First, we examine the impact of M different values of previously learned variables in
data generation on the recovery rate. As shown in Table 2, when M varies from 50 to 200, the recovery rates of our
approach remain fairly consistent. This suggests that our method is not sensitive to the number of generated samples M
as it is sufficiently large.

Table 2: Effect of M samples on recovery rate of the proposed SRCV using Nguyen.

Benchmark Expression M=50 M=100 M=150 M=200
Nguyen-09 sin(x) + sin(y2) 90% 90% 90% 90%
Nguyen-10 2 sin(x) cos(y) 90% 90% 90% 90%
Nguyen-11 xy 70% 70% 70% 70%
Nguyen-12 x4 − x3 + 1

2y
2 − y 60% 70% 70% 70%

Effect of K groups in data generation. Next, we study the effect of K groups of generated data samples for the
current variable on the recovery rate of SRCV. We can observe from Table 3 that the recovery rates almost keep the
same as K changes from 50 to 200.

Effect of N training samples. Lastly, we investigate the influence of the training data size (N ) on the proposed SRCV.
It can be seen that our method achieves good performance when the number of training samples is sufficiently large. If
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Table 3: Effect of K groups on the recovery rate of our SRCV using Nguyen.

Benchmark Expression K=50 K=100 K=150 K=200
Nguyen-09 sin(x) + sin(y2) 90% 90% 90% 90%
Nguyen-10 2 sin(x) cos(y) 90% 90% 90% 90%
Nguyen-11 xy 70% 70% 60% 70%
Nguyen-12 x4 − x3 + 1

2y
2 − y 60% 70% 70% 70%

the equations are more complex, it might be necessary to increase the amount of training data provided to the DNNs for
optimal results.

Table 4: Effect of N training samples on the recovery rate of our SRCV using Nguyen.

Benchmark Expression N=800 N=1600 N=3200 N=4800 N=6400
Nguyen-09 sin(x) + sin(y2) 90% 90% 90% 90% 90%
Nguyen-10 2 sin(x) cos(y) 90% 90% 90% 90% 90%
Nguyen-11 xy 70% 70% 70% 70% 70%
Nguyen-12 x4 − x3 + 1

2y
2 − y 60% 60% 60% 70% 70%

5 Conclusion

In this work, we developed two non-exemplar-based methods, YONO and YONO+, for class-incremental learning.
Specifically, YONO only needs to store and replay one prototype for each class without generating synthetic data from
stored prototypes. As an extension of YONO, YONO+ proposed to create synthetic replay data from stored prototypes
via a high-dimensional rotation matrix and Gaussian noise. The evaluation results on multiple benchmarks demonstrated
that both YONO and YONO+ can significantly outperform the baselines in terms of accuracy and average forgetting. In
particular, the proposed YONO achieved comparable performance to YONO+ with data synthesis. Importantly, this
work offered a new perspective of optimizing class prototypes for exemplar-free incremental learning.
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A Generate Expression Tree in Fig. 4

We introduce how to generate a mathematical expression with a specific complexity to estimate the search space in
symbolic regression. In this work, we attempt to sample equations uniformly, i.e., all valid equations should have the
same probability to be selected. A valid equation defined as follows.
Definition 2. An equation is valid if it is a proper mathematical equation consisting of Mt (Mt = 5) terminal symbols
{x1, x2, x3, x4, const}, Mu (Mu = 4) unary operators {sin, cos, log, exp}, and Mb (Mb = 4) binary operators
{+,−,×,÷}. Moreover, it should not contain nested unary operators, such as sin(cos(x1)+1) or log(sin(x1)), since
they are not very meaningful in most real cases.

Before describing our sampling method, we first define Fi and Gi that will be used for sampling.
Definition 3. Let Fi and Gi be the number of valid equations with complexity i containing no unary operator and
at least one unary operator, respectively. The criterion for distinguishing two equations is based on the structure of
their expression trees rather than their algebraic equivalence. According to this, some equations that are algebraically
equivalent, such as x1 + x2 + x3, will be counted multiple times due to different tree structures. Nevertheless, it almost
has no influence on the overall results.

Next, we introduce the idea of calculating Fi and Gi using dynamic programming. First, we consider Fi. When the
complexity i is 0, the valid expression set contains only Mt terminals without unary operators, so F0 = Mt. When
the complexity is greater than or equal to 1, we need to consider the root of the expression tree. Since Fi counts an
expression tree with no unary operator, its root has to be a binary operator with Mb possibilities. Suppose the left
subtree has complexity of j (j = 0, . . . , i− 2), then the complexity of the right subtree is i− j − 2. As a result, it has
FjFi−j−2 feasible options given a certain j. Finally, we can sum up all the cases and multiply the result by Mb to get
Fi.

Fi =

{
Mt i = 0

Mb

∑i−2
j=0 FjFi−j−2 i > 0,

(4)

For Gi, when the complexity is 0, there is no unary operator, so G0 = 0. When the complexity is greater than or
equal to 1, the root can be either a unary operator or a binary operator. (1) If the root is a unary operator, we have
MuFi−1 options for tree structures. (2) If the root is a binary operator, we assume that the left subtree has complexity
of j (j = 0, . . . , i− 2), then the right subtree has the complexity of i− j − 2. According to the Definition 3, one or
both of the subtrees should contain at least one unary operator, so the number of options for tree structures should
be G(i, j) = GjGi−j−2 +GjFi−j−2 + FjGi−j−2. Since the root has Mb choices in this scenario, we can multiply
G(i, j) by Mb to get the total options for a binary operator. Combining (1) and (2), we can get Gi as follows.

Gi =

{
0 i = 0

MuFi−1 +Mb

∑i−2
j=0 GjGi−j−2 +GjFi−j−2 + FjGi−j−2 i > 0,

(5)

Lastly, we summarize the sample subroutine in Algorithm 2. First, we need to figure out whether a mathematical
expression contains a unary operator or not. The probability of containing at least one unary operator is Gi/(Fi +Gi),
and that of not containing one is Fi/(Fi +Gi). If there is no unary operator, we use SAMPLEBYNU in Lines 5-17
to generate the expression. This function operates as follows: if the complexity is 0, we select a terminal symbol
Mu (Mu = 4) as mentioned above. Otherwise, we sample the operator at the root and the complexity of the left subtree
according to the number of their options. After this, we recursively invoke subroutines to generate the subtrees. If there
exists at least one unary operator, we use SAMPLEBYU instead, which uses a similar way to that in SAMPLEBYNU. By
doing this, we can generate an expression tree with a specified complexity.

B Dataset Description

First, we introduce how to generate training data and validation data using two SR benchmarks. As shown in Table 5,
we choose a certain range and then generate 8000 data samples. Then we split them into 6400 and 1600 for training
and validation, respectively.

Next, we describe how to generate the synthetic data for two gene regulatory networks: the genetic toggle switch
and the repressilator. For the genetic toggle switch, we generate 1000 trajectories by randomly choosing 1000 initial
conditions. We use 800 of them as training data and the remaining 200 as validation data. The time span of each
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Algorithm 2 Expression Tree Sampling Algorithm
1: Input: Target complexity N , and pre-calculated Fi, Gi

2: function SAMPLEBYWEIGHT(weights)
3: return i with possibility weightsi∑

weights
. weights indexed from 0.

4: end function
5: function SAMPLENU(N )
6: // Sample equation with no unary operator according to Equation 4
7: if N = 0 then
8: return one terminal symbol sampled from {‘x1’, ‘x2’, ‘x3’, ‘x4’, ‘const’}
9: end if

10: weights← {}
11: for i = 0, . . . , N − 2 do
12: weights← weights + {Fi · FN−i−2}
13: end for
14: Sample i using SAMPLEBYWEIGHT(weights)
15: Sample operator from {‘+’, ‘−’, ‘×’, ‘÷’}
16: return SAMPLENU(i) + operator + SAMPLENU(N − i− 2)
17: end function
18: function SAMPLEU(N )
19: // Sample equation with at least one unary operator according to Equation 5
20: if SAMPLEBYWEIGHT({MuFN−1, GN −MuFN−1}) = 0 then
21: Sample operator from {‘sin’, ‘cos’, ‘log’, ‘exp’}
22: return operator + SAMPLENU(N − 1)
23: else
24: Use the same method as SAMPLENU to sample a tree with binary operator as the root
25: end if
26: end function
27: if SAMPLEBYWEIGHT({FN , GN}) = 0 then
28: Sample equation Equ using SAMPLENU(N )
29: else
30: Sample equation Equ using SAMPLEU(N )
31: end if
32: Output: The sampled equation Equ

Table 5: Detailed description of the SR benchmark datasets.

Benchmark Expression Range Num. of samples
Nguyen-09 sin(x) + sin(y2) [-3, 3] 8000
Nguyen-10 2 sin(x) cos(y) [-3, 3] 8000
Nguyen-11 xy [1, 2] 8000
Nguyen-12 x4 − x3 + 1

2y
2 − y [-3, 3] 8000

Jin-1 2.5x4 − 1.3x3 + 0.5y2 − 1.7y [-3, 3] 8000
Jin-2 8.0x2 + 8.0y3 − 15 [-3, 3] 8000
Jin-3 0.2x3 + 1.5y3 − 1.2y − 0.5x [-3, 3] 8000
Jin-4 1.5 exp(x) + 0.5 cos(y) [-3, 3] 8000
Jin-5 6.0 sin(x) cos(y) [-3, 3] 8000
Jin-6 1.35xy + 5.5 sin((x− 1.0)(y − 1.0)) [-3, 3] 8000

trajectory is t ∈ [0, 1] with a sampling time interval of 0.01. Namely, we sample 100 data points for each trajectory. For
the repressilator, we generate 5000 trajectories using 5000 random initial conditions. They are split into 4000 training
data and 1000 validation data respectively. The time span of each trajectory is t ∈ [0, 4] with a sampling time interval
of 0.01.

C Experimental Setup for Different Methods

In this subsection, we present the experimental settings for the baselines. Following the prior work [29], for gplearn, we
set the population to be 10000 and the number of generations to 50. For other baselines, SPL, NGGP, and DSR, we
directly use their source code with the default parameters to implement experiments.
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D Computational Cost of Different Methods

We also compare the computational cost of the proposed SRCV and baseline approaches on Nguyen benchmark, as
shown in Table 6. Our experimental results illustrate that our method, including DNNs and single-variable SR, have
less running time than the baseline on Nguyen-12. However, it needs more running time than GP on Nguyen-09 and
Nguyen-10, than DSR and NGGP on Nguyen-10 and Nguyen-11. However, our method has much higher recovery rate
than DSR and NGGP, as illustrated in Table 1.

Table 6: Comparison of running time (seconds)

Benchmark Expression SRCV (ours) SPL NGGP DSR GP
Nguyen-09 sin(x) + sin(y2) 697.00 2773.32 2551.89 1080.58 36.01
Nguyen-10 2 sin(x) cos(y) 675.46 2447.58 383.27 89.40 10.46
Nguyen-11 xy 655.60 4674.99 131.48 45.32 999.91
Nguyen-12 x4 − x3 + 1

2y
2 − y 820.44 4932.86 3428.79 3156.63 1754.50

E Discovered Governing Equations of Repressilator

Below, we present the discovered equations of the repressilator using our method. We can see that the equations are
very close to the target model, except for α0 = 10−5. The main reason is that α0 is too tiny to be estimated. However,
it does not impact the trajectory prediction too much, according to our results in Fig. 5.

dMlacI

dt
= −MlacI +

9.939

0.982 + P 3
tetR

dMtetR

dt
= −MtetR +

10.338

1.035 + P 3
cI

dMcI

dt
= −McI +

9.845

0.987 + P 3
lacI

dPcI

dt
= MlacI − PcI

dPlacI

dt
= MtetR − PlacI

dPtetR

dt
= McI − PtetR,

(6)

F Baselines on Gene Regulatory Networks

We also adopt the baseline methods to identify the governing equations of two gene regulatory networks. As illustrated
in Table 7, we can observe that the governing equations uncovered by our SRCV method are close to the ground truth,
while the baselines fail to discover governing equations from data. Note that we only list one representative equation
in the following Table, but you can refer to the discovered equations of our method in Eqs.6 and 2 above. Thus, the
proposed SRCV demonstrates the superior performance over the baselines in discovering symbolic equations.

G Limitations and Future Work

The accuracy of our evaluation results is impacted by the accuracy of single-variable symbolic regression. In this
work, we adopt the state-of-the-art MCTS method for symbolic regression. For future work, we need to develop
new single-variable symbolic regression models to improve the accuracy. The accuracy of prediction results is also
impacted by the number of training samples for DNNs. If the number of training data is limited, we need to explore a
physics-enhanced neural symbolic regression model.
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Table 7: The discovered results of different methods (one representative equation)

Task Model Discovered Equation
Toggle Truth dU/dt = 4/(1 + V 3)− U

SRCV dU/dt = 3.919/(0.972 + V 3)− U
SPL dU/dt = −U + 2.539 exp(cos(V ))− cos(V )− 1.749
NGGP dU/dt = U − V + cos(V − log(−1/(0.084U2) + 0.084U log(U)− 3.194)) + 0.067) + 3.544
DSR dU/dt = −U − V − sin(1.357V + 5.138) + 3.357
GP dU/dt = sin(exp(exp(exp(U))2)− exp(exp(sin(exp(V ))2 · sin(cos(U)− U − 7.252)) . . .

Protein Truth dMlacI/dt = −MlacI + 10/(1 + P 3
tetR) + 10−5

SRCV dMlacI/dt = −MlacI + 9.939/(0.982 + P 3
tetR)

SPL dMlacI/dt = 3.234− 0.455MtetR

NGGP dMlacI/dt = MlacI(−2PcIPtetR + PlacI + 6.564)/(PcI + 10.913)
DSR dMlacI/dt = −1.582 + 3.482M2

tetR/(PtetRM
2
tetR + 0.842)

GP dMlacI/dt = 2.162/(M7
cI +McIPlacI)

H Broader Impact

The goal of this work is to improve the accuracy and scalability of symbolic regression for scientific discovery. The
proposed SRCV method has demonstrated superior performance over state-of-the-art methods in discovering analytical
expressions from data, which can promote AI for scientific discovery. Note that this fundamental research will not
cause any potential negative societal impacts.

I Computing Resources

We implement our experiments on the server with 1 A5000 GPUs with 24 GB graphics memory. The server has 32-Core
3.4 GHz AMD EPYC 7532 processors with 250GB RAM with 4TB SSD of storage capacity.
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