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Abstract
Background: Alzheimer’s disease (AD) is a heterogeneous, multifactorial
neurodegenerative disorder characterized by three neurobiological factors
beta-amyloid, pathologic tau, and neurodegeneration. There are no effective
treatments for AD at a late stage,urging for early detection and prevention.How-
ever, existing statistical inference approaches in neuroimaging studies of AD
subtype identification do not take into account the pathological domain knowl-
edge, which could lead to ill-posed results that are sometimes inconsistent with
the essential neurological principles.
Purpose: Integrating systems biology modeling with machine learning, the
study aims to assist clinical AD prognosis by providing a subpopulation classifi-
cation in accordance with essential biological principles, neurological patterns,
and cognitive symptoms.
Methods: We propose a novel pathology steered stratification network (PSSN)
that incorporates established domain knowledge in AD pathology through a
reaction-diffusion model, where we consider non-linear interactions between
major biomarkers and diffusion along the brain structural network. Trained on
longitudinal multimodal neuroimaging data, the biological model predicts long-
term evolution trajectories that capture individual characteristic progression pat-
tern,filling in the gaps between sparse imaging data available.A deep predictive
neural network is then built to exploit spatiotemporal dynamics, link neurological
examinations with clinical profiles, and generate subtype assignment probabil-
ity on an individual basis. We further identify an evolutionary disease graph to
quantify subtype transition probabilities through extensive simulations.
Results: Our stratification achieves superior performance in both inter-cluster
heterogeneity and intra-cluster homogeneity of various clinical scores.Applying
our approach to enriched samples of aging populations,we identify six subtypes
spanning AD spectrum, where each subtype exhibits a distinctive biomarker
pattern that is consistent with its clinical outcome.
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Conclusions: The proposed PSSN (i) reduces neuroimage data to low-
dimensional feature vectors, (ii) combines AT[N]-Net based on real pathological
pathways, (iii) predicts long-term biomarker trajectories, and (iv) stratifies sub-
jects into fine-grained subtypes with distinct neurological underpinnings. PSSN
provides insights into pre-symptomatic diagnosis and practical guidance on clin-
ical treatments, which may be further generalized to other neurodegenerative
diseases.

KEYWORDS
Alzheimer’s disease, machine learning, neuroimaging, pathology, subtype identification, systems
biology

1 INTRODUCTION

Alzheimer’s disease (AD), one of the common neu-
rodegenerative disorders, causes progressive memory
loss,cognitive decline,behavioral disturbance,functional
dependence, and ultimately death.1 No effective treat-
ments for AD have been found so far, urging the need
for early diagnosis and intervention. Current diagnostic
systems for AD primarily rely upon clinical signs and
symptoms. However, neuropsychological assessments
alone are inadequate to reflect the underlying patho-
physiological progressions considering the long preclin-
ical period and diverse symptoms across individuals.2–4

Additionally, post-mortem histological examination of
AD pathology in brain tissue samples often does not
align closely with clinical diagnosis.5 This body of evi-
dence further underscores the significant gap between
symptomatic manifestations and latent development of
AD pathology.6–8 Therefore, to facilitate accurate prog-
nosis and prompt intervention of AD, it is critical to
stratify the aging population into fine-grained subtypes
that are not only closely correlated with clinical out-
comes but also characterize biomarker progression of
cognitive decline.

According to the 2018 NIA-AA (National Institute
on Aging and Alzheimer’s Association) research
framework,9 accumulations of beta-amyloid plaques (A)
and pathologic tau (T), along with neuro-degeneration
([N]), are considered the three pathological hallmarks of
AD progression. With recent advancement and acces-
sibility of neuroimaging techniques, spatial data for
biomarkers and atrophy patterns becomes increasingly
available for clinical and research purposes. Striking
efforts have been made to understand and explain the
heterogeneity in AD progression from neuroimaging
data,10–13 among which statistical inference, mostly
machine learning approaches, have proven its promis-
ing potential in AD subtype identification.14–17 For
example, a Subtype and Stage Inference (SuStaIn)
was developed to predict temporal patterns and identify
AD subtypes from cross-sectional magnetic resonance
imaging (MRI) progression patterns.18 Vogel et al.
extended the SuStaIn to include tau biomarker and
identified four distinct progression subtypes.19 Recently,

a semi-supervised clustering via generative adversarial
networks (Smile-GAN) was proposed to cluster subjects
with distinct progression pathways using brain atrophy
measurements.20 However, those methods including
most existing machine learning analyses do not take
into account the underlying pathological mechanism
of AD, which may result in ill-posed results that are
inconsistent with essential biological laws.

Different from statistical inference approaches, math-
ematical modeling predicts disease progression based
on existing knowledge of AD pathology.21 Several mod-
els have been proposed to simulate the propagation
pattern of biomarkers. For example, an ordinary dif-
ferential equation (ODE) system was constructed to
mathematically model the temporal progression of amy-
loid and neuronal dysfunction.22 Following the diffusive
nature of amyloid and tau, network diffusion models
were developed to predict longitudinal patterns of atro-
phy and metabolism in AD across brain networks.23,24

This pioneering work has shown the potential of captur-
ing macroscopic properties of disease progression from
a systems biology perspective. Hao et al. proposed a
PDE-based (partial differential equation) system biology
model to investigate the complex molecular pathways
underlying AD.25 But this model was not designed on a
real brain domain and was restricted to theoretical anal-
ysis due to the lack of real data validation. Recently,
a network-guided reaction-diffusion model was pro-
posed to integrate both the interactions between AT[N]
biomarkers and the diffusions along structural brain
networks, which encodes the prevailing pathological
mechanisms of AD and captures biomarker dynamics of
individuals.26 While those studies demonstrated the role
of neurobiological factors in heterogeneous trajecto-
ries of cognitive decline,27–29 a comprehensive analysis
of phenotypic heterogeneity is still lacking, which limits
their applicability to the general population.

To disentangle the heterogenous neurodegeneration
trajectories, we propose a novel pathology steered
stratification network (PSSN) based on the combined
power of data-driven deep learning and theory-based
biological modeling. Our approach is integrated with
existing neuropathological mechanisms and is eval-
uated on significant longitudinal multimodal imaging
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1192 AD SUBTYPE IDENTIFICATION

scans covering the full spectrum of cognitive states
(from cognitive normal to AD), allowing the model to
be trained on different progression paths. To the best
of our knowledge, the proposed computational frame-
work is the first subtype identification tool that jointly
considers the biomarker pathological interactions, brain
network diffusions, and clinical assessments for popu-
lation stratification. Leveraging theory-based biological
models and data-driven deep learning, our PSSN: incor-
porates neuropathological domain knowledge to ensure
neurologically consistent results; ameliorates the limi-
tation of sparse longitudinal imaging data by learning
the spatiotemporal dynamics of AT[N] biomarkers;strat-
ifies subjects into fine-grained subtypes with distinct
neurological underpinnings and phenotypic outcomes;
characterizes subtype transition path on AD spectrum,
providing insight into pre-symptomatic prognosis and
prevention. It is important to note that fully validating
the subtypes identified by our model may be challeng-
ing. This is primarily due to the absence of a definitive
ground truth for subtype assignment in AD and the inher-
ent heterogeneity present in the AD data. Nevertheless,
we believe that our model could provide insights and
contributes to the ongoing efforts to understand the
complex nature of AD progression. We will continue
to process additional temporal neuroimaging data to
enhance the representativity of our model and improve
its accuracy.

2 MATERIALS AND METHODS

2.1 Data collection and image
processing

The data used in this study was collected from
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database. We retrieved (i) demographic information,
including age, gender, education, and occupation infor-
mation; (ii) clinical assessment from a wide range of
neuropsychological domains, including memory, execu-
tive, language, sociability, attention, etc.; (iii) longitudinal
neuroimaging data, including Amyloid-, Tau-, and FDG-
PET for AT[N] biomarker burden, and DWI for structural
brain networks.Subjects selected here have two or more
longitudinal scans and clinical assessment data. 320
subjects were then selected based on three criteria:
(i) have available Amyloid-PET, Tau-PET, FDG-PET, T1-
weighted MRI, and DWI scans, (ii) have at least one
follow-up PET scan of A,T,or [N] biomarkers to track AD
progression,and (iii) have a clinical diagnostic label indi-
cating their cognitive status, either as cognitive normal
(CN) or AD, assigned for each PET scan.

2.1.1 Brain network construction

DWI images were aligned with each subject’s T1-
weighted MRI. We first parcellate brains to 148 regions

based on the parcellation framework proposed in40 and
then applied the surface seed-based probabilistic fiber
tractography in FreeSurfer.41 The number of fibers con-
necting two brain regions is counted to measure the
strength of the anatomical connectivity of pair-wise
regions and stored in the connectivity matrix. A total
of 506 structural brain networks were constructed from
DWI images.

2.1.2 Regional AT[N] level acquisition

A total of 2807 amyloid PET (1252 subjects), 1009 tau
PET (670 subjects), and 3590 FDG PET (1516 sub-
jects) images were parcellated into 148 regions using
Destrieux atlas40 by aligning with each subject’s T1-
weighted MR image. We then calculate the regional
standard uptake value ratio (SUVR) for amyloid-, tau-,
and FDG-PET to represent the regional value of corre-
sponding biomarkers, which is normalized by the whole
cerebellum reference. All the PET data we collected
have passed the quality control of the ADNI.

2.1.3 Cognitive reserve

A computational proxy of the cognitive reserve36 is used
here to quantify the subject-specific network resilience
to AT[N] pathology. Subjects’ demographic data, socioe-
conomic factors, cerebrospinal fluid biomarkers, and
AD-related polygenetic risk are individually evaluated
and serve as a moderator against neurodegeneration
in our model.

2.1.4 Clinical assessments

MMSE, ADAS, and CDR scores are indicators of sub-
jects’ overall cognition status and are used to guide
our PSSN. We use Everyday Cognition Questionnaire
(ECog) scores to validate and analyze our results.ECog
is scored on a four-point scale where higher scores
represent more severe dementia, based on one global
factor and six domain-specific factors:everyday memory
(ECogMem), language (ECogLang), visuospatial abili-
ties (ECogVisspat), planning (ECogPlan), organization
(ECogOrgan),and divided attention (ECogDivatt).All the
above clinical assessment data were collected from the
ADNI database.

2.2 Reaction-diffusion model

Based on existing neuropathological knowledge,we first
construct a reaction-diffusion model of AD to character-
ize the spatiotemporal interaction and diffusion of AT[N]
biomarkers. This biological model can predict subject-
specific long-term propagation patterns across brain
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AD SUBTYPE IDENTIFICATION 1193

F IGURE 1 Pathology steered stratification framework: A novel integration of a systems biology model and deep predictive neural network.
(a) Longitudinal multimodal neuroimages input: Amyloid-, Tau-, FDG-PET, and DWI scans are processed to indicate regional amyloid, tau,
neurodegeneration, and network connectivity level (AT[N]-Net), respectively. (b) Reaction-diffusion model: A diffusive AT[N] cascade model was
proposed based on several canonical AD pathways. (c) Spatiotemporal dynamics: Reaction-diffusion model generates subject-specific
long-term AT[N] trajectory prediction. (d) Feature extraction network: A LSTM network learns a lower-dimension representative feature from the
predicted trajectories and structural network. (e) Subtype network: A fully connected neural network that classifies the learned features to the
subtype-probability vectors. (f) Prediction network: A fully connected neural network that predicts clinical assessments using the
subtype-probability vectors.

networks, which enables PSSN to identify AD subtypes
following neurological principles.

2.2.1 Model entity

As shown in Figure 1a, the model takes four entities
of AD as input: (i) A biomarker level measured from
amyloid PET at 148 brain regions, which is a vector
of 148 × 1; (ii) T biomarker level measured from tau
PET of size 148 × 1; (iii) [N] biomarker level measured
from FDG PET of size 148 × 1; Each AT[N] input is a
592 × M matrix, where M denotes the number of sub-
jects included in our model. (iv) Brain network (graph
Laplacian),which is a 148× 148 matrix used as the diffu-
sive pathway for AT[N].These multimodal neuroimaging

data jointly provide a comprehensive AD profile of each
subject.

2.2.2 Model design

In Figure 1b, the core of our reaction-diffusion model
is the amyloid cascade hypothesis.30–34 (i) Amyloid
activates hyperphosphorylation of tau, tau triggers
subsequent neurodegeneration, and damaged neu-
rons release more amyloid to the brain (dashed
arrows).35 (ii) Amyloid and tau have constant production
(solid arrows) and density-based degradation (hollow
arrows). (iii) Neuronal resilience moderates the rate
of neurodegeneration.36 (iv) Amyloid and tau diffuse
along the structural brain network via the Laplacian
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1194 AD SUBTYPE IDENTIFICATION

operator.24,37,38 This model quantitatively character-
izes the spatiotemporal dynamics of AT[N] biomarkers
(Figure 1c), laying a solid foundation for AD prognos-
tic subtype identification. Detailed descriptions can be
found in.26

2.3 Pathology steered stratification
network

Following our biological model,we construct a deep pre-
dictive neural network to disentangle the heterogenous
neurodegeneration progression and stratify subjects
into fine-grained subtypes within distinct neurobiological
underpinnings.

2.3.1 Data fusion

Let tm denote the number of clinical assessments
for subject m. For each subject m, we (i) pre-
dict the trajectories of AT[N] biomarkers using the
reaction-diffusion model; (ii) select tm points from
subject m’s trajectory corresponding to the time
points of clinical assessments, concatenate AT[N]
data {A1, … , A148, T1, … , T148, N1, … , N148} and the
diagonal elements of Laplacian matrix {L1, … , L148}
for each t ∈ {1,… , tm} to generate a 592 × tm matrix,
which serves as the input to our stratification net-
work; and (iii) extract clinical assessments of subject
m as output, which includes mini-mental state exami-
nation (MMSE), Alzheimer’s disease assessment scale
(ADAS), and clinical dementia rating (CDR). Thus for
a total population of M, we have an input matrix X =

{Xt
m|m = 1, … , M, t = 1, … , tm} , where each Xt

m rep-
resents the AT[N]-Net data of subject m at visit t, and
output matrix Y = {Yt

m|m = 1, … , M, t = 1, … , tm},
where Yt

m represents the three clinical scores of subject
m at visit t.

2.3.2 Stratification network

We aim to stratify aging brains into a set of subtypes,
written as S = {St

m|m = 1,… , M, t = 1,… , tm} , where
St

m is the subtype index for subject m at the tth visit.
To distinct neurobiological underpinnings between sub-
types as well as preserve the shared symptoms and
cognitive decline patterns within each subtype, three
sub-networks are proposed as follows.

1. Feature extraction network (Figure 1d). The feature
extraction network is a many-to-many Long Short-
Term Memory (LSTM) network to learn representa-
tive features of each sample. For each input sample
Xt

m of subject m at the tth visit, the corresponding
AT[N]-Net data is reduced to a feature vector in a
lower-dimensional space, represented as an AT[N]-

Net feature vector Pt
m = P𝜃 (X1

m, X2
m,… , Xt

m), P𝜃 is
the feature representation learning network, and 𝜃

denotes the parameters of the network.
2. Subtype network (Figure 1e). The subtype network is

a fully connected neural network that learns patterns
in the subject pool and then maps each AT[N]-Net
feature vector Pt

m into a subtype-specific feature
vector Ct

m(k), where k ∈ {1, 2,… , K} and K denotes
the number of identified subtypes. Also, we include
fuzzy assignment by minimizing the entropy-based

regularization term Et
m = −

K∑
k = 1

Ct
m(k)log(Ct

m(k)) to

avoid the trivial stratification solution (one dominant
cluster). Let 𝜓 denote the parameters of subtype
network.

3. Prediction network (Figure 1f). We use a fully con-
nected neural network to predict each subject’s
MMSE,CDR,and ADAS scores based on the subtype
assignment probability Ct

m generated in Subtype Net-
work. A L2-norm loss function is used to measure the
prediction error,written as ltm = ‖Yt

m − Ŷ t
m‖2.This clin-

ical assessment-guided feature allows us to group
subjects with similar clinical stages. Let 𝜙 denote the
parameters of the prediction network.

2.3.3 Optimization

Three sub-networks are jointly updated by the loss
function

L ( 𝜃,𝜓,𝜙) =
M∑

m=1

tm∑
t=1

(
ltm + 𝜆 ⋅ Et

m (k)
)

,

where ltm allows clinical assessments to guide the strat-
ification process and 𝜆 is a hyperparameter used to
control the level of fuzzy assignment. Directly calculat-
ing the backpropagation derivative is quite complicated
in the Stratification network, as it aims to minimize the
divergence between clinical scores and predictions as
well as to find the optimal cluster assignments at the
same time. Thus, we apply the actor-critic model39 for
optimization, which iteratively optimizes two groups of
sub-networks.

Let ∇𝜙, ∇𝜃, ∇𝜓 represent the gradients of the back-
propagation process, respectively.We first fix the param-
eter of the prediction network (𝜙) to estimate parameters
of feature extraction and subtype network (𝜃,𝜓). By
fixing 𝜙, gradients ∇𝜃 can be given by:

∇𝜃 =
𝜕L
𝜕𝜃

=

M∑
m=1

tm∑
t=1

( K∑
k=1

‖Yt
m − Ŷ t

m‖2∇𝜃E
t
m(k)

−𝜆∇𝜃

K∑
k=1

Et
m(k)log

(
Et

m(k)
))
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AD SUBTYPE IDENTIFICATION 1195

TABLE 1 Cluster sizes of K-means, SuStaIn, and PSSN
methods.

K-means SuStaIn PSSN

Subtype #1 275 207 211

Subtype #2 1115 238 217

Subtype #3 76 304 423

Subtype #4 237 861 743

Subtype #5 246 327 210

Subtype #6 10 22 155

Similarly, the gradients ∇𝜓 can be given by:

∇𝜓 =
𝜕L
𝜕𝜓

=

M∑
m=1

tm∑
t=1

( K∑
k=1

‖Yt
m − Ŷ t

m‖2∇𝜓Et
m(k)

−𝜆∇𝜓

K∑
k=1

Et
m(k)log

(
Et

m(k)
))

At each stage, we update the subtype assignment
by the updated subtype-specific features {Ct

m}. Then by
fixing the feature extraction network and subtype net-
work (𝜃,𝜓), we iteratively update the prediction network
whose gradient is given by:

∇𝜙 =
𝜕L
𝜕𝜙

=

M∑
m=1

tm∑
t=1

𝜕ltm
𝜕𝜙

3 RESULTS

Our PSSN outputs two types of information. First,
the PSSN uses a reaction-diffusion model to predict
the spatiotemporal dynamics of AT[N] biomarkers for
each subject. This model incorporates current neu-
ropathological pathways between these biomarkers and
integrates their diffusion across brain networks. By
doing so, we ensure that the prediction results are
aligned with known neuropathological pathways. The
predicted spatiotemporal dynamics provide insights into
how the AT[N] biomarkers evolve and interact over
time within the aging brain. This information helps us
understand the underlying biological processes and
mechanisms associated with the progression of neu-
rodegenerative diseases. Secondly, utilizing the learned
AT[N] evolution trajectories, the deep predictive neu-
ral network of PSSN is able to stratify aging brains
into fine-grained subtypes. These subtypes are iden-
tified based on the distinctive patterns of biomarker
dynamics observed across different individuals. By cap-
turing the heterogeneity within the aging population,
this stratification enhances our understanding of the

diverse pathways and trajectories of neurodegenera-
tion. It is particularly valuable when dealing with sparse
longitudinal imaging data, addressing the limitations of
data availability. PSSN allows us to characterize and
study subgroups of individuals with similar biomarker
profiles and clinical outcomes, providing opportunities
for targeted interventions and personalized treatment
approaches.

3.1 Experiment setup and parameter
tuning

We conducted our experiments on a multi-core Red-
hat Linux machine with two 32GB NVIDIA Tesla V100
GPUs.Our model was developed and constructed using
TensorFlow, a popular machine learning framework. To
train our PSSN, the data (X and Y ) is randomly split
into training (80%) and validation (20%) sets. Since
there is no ground truth for subtype assignments, we
determine the optimal number of clusters by jointly
considering cluster results from K-means, SuStaIn, and
our PSSN. Taking K-means and SuStaIn as baselines,
our method attains the lowest cluster variance ratio
with respect to both K-means SuStaIn methods. Indeed,
when K = 6, PSSN yields the lowest variance for all
ECog scores except ECogOrgan (K = 5), as shown in
Figure 2.

The hyper-parameters were set to K = 6,𝜆 = 10−5 ,
FC_dim = 8 and keep_ prob = 0.7, where K rep-
resents the number of subtypes and has the most
significant impact on both the clustering outcomes
and final experimental results; 𝜆 is the parameter for
calculating the loss function; FC_dim is the number
of layers of the fully connected networks used in
both the Subtype Network and the Prediction Net-
work; keep_prob is the probability of data kept at each
dropout.

3.2 Stratification comparison

We use seven ECog scores (Mem, Lang, Visspat, Plan,
Organ, Divatt, and Total) to evaluate the subtype strat-
ification results as they reflect the clinical stages of
AD progression and are unknown to all models. We
first analyze the distribution of subtype classification in
three methods. As shown in Table 1, K-means and SuS-
taIn identified a giant cluster that includes more than
50% of observations despite extensive attempts. One
possible explanation is their incapability to handle high-
dimensional spatial data, where our input dimension is
148 brain regions. The elastic feature extraction net-
work in PSSN can adapt to time series data with various
lengths. Given the sporadic availability of neuroimaging
data in the real world,such a design maximizes the utility
of available data.
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1196 AD SUBTYPE IDENTIFICATION

F IGURE 2 Optimal number of subtypes. Intra-cluster variance ratios on ECog scores between (a) PSSN and K-means, (b) PSSN and
SuStaIn with varying K, respectively. For instance, as shown in subplot (a), the EcogSPVisspat (blue line) has a value of 0.8850 at K = 5. This
indicates that utilizing the PSSN can lead to an 11.50% decrease in intra-cluster variance when compared to directly applying K-means.

3.2.1 Intra-cluster homogeneity

We then investigate the consistency of clinical outcomes
within each cluster. For each subtype identified by the
PSSN, we calculate the variance of clinical scores to
evaluate the quality of subtype classification, where
a small variance indicates intra-cluster homogeneity.
Figure 3a shows the intra-cluster variance of seven
ECog scores by K-means (top), SuStaIn (middle), and
PSSN (bottom). Note that each column of the heap
map is individually normalized using column-wise z-
scores, ensuring that each method is compared using
the same mean and standard deviation values. Our
PSSN method achieves superior intra-cluster consis-
tency compared to K-means and SuStaIn in all ECog
assessments.

3.2.2 Inter-cluster heterogeneity

A pairwise t-test was performed to check the inter-
cluster variance. In Figure 3b, we plot a triangle with
C2

6 = 15 grids where each grid represents the results
of two-sample t-tests. As shown in Figure 3b, our PSSN
method achieves the best performance since it has the
least biased subtypes (pink grids, <5% of the subject
pool) and the greatest number of pairs with significant
inter-cluster differences (red grids, p-value < 0.05). We
further rank each subtype according to the severity of
averaged MMSE,CDR,and ADAS scores. It is found that
our PSSN has the smallest cross-ranking links, indicat-
ing the best consistency within each subtype (Figure 3c).
With the lowest intra-cluster variance as well as the

highest inter-cluster difference, our PSSN achieves the
best coherence of all clinical assessments and sets
a solid cornerstone for its clinical implications and
applications.

3.3 Clinical insights

Current diagnoses of AD are often delayed due to the
wide spectrum of clinical symptoms among individu-
als. Given the fine-grained subtype identified by our
model, we further examine the distribution of ECog
scores to explore the representative symptoms of each
subtype.

3.3.1 ECog entropy

To evaluate the inter-cluster difference of ECog scores,
we calculate the cluster-wise entropy E(L) in seven
ECog scores:

E (L) =

{
−

K∑
i = 1

p
(
li,j
)

log2 p
(
li,j
) | j = 1,… , 7

}
,

where j refers to the index of ECog scores, and p(li,j)
is the probability of assigning the jth ECog scores to ith

subtype.The average entropies of each ECog score are
shown in Figure 4a.Compared to K-means and SuStaIn,
our PSSN achieves the lowest entropies in all seven cat-
egories of ECog scores,showing the greatest stability in
subtype identification.
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AD SUBTYPE IDENTIFICATION 1197

F IGURE 3 Intra-cluster homogeneity and inter-cluster heterogeneity. (a) Intra-cluster variance heatmap of ECog scores for PSSN,
K-means and SuStaIn methods, where darker color represents lower variance. (b) Inter-cluster variance: Subtype pairs are marked red if the
adjusted p-value across their MMSE, CDR, and ADAS scores is significant (<0.05). For significant subtype pairs, the gird is marked pink if at
least one of these two subtypes is a biased subtype. (c) Trajectory plots of subtypes ranking according to MMSE, CDR, and ADAS scores.

3.3.2 Subtype symptom

In Figure 4b, the six domains of ECog (except ECog-
Total) are mapped to six brain domains based on
functional parcellation (see Figure 4 for detailed brain
region parcellation). Further in Figure 4c, we con-
clude the position of subtypes in the continuous
spectrum: CN-like subtypes (#1, #4), MCI-like sub-
types (#5, #6), and AD-like subtypes (#2, #3). The
observed pattern summarized below offers new insight
into the pre-diagnosis and treatment of AD as it
inherently combines physiological and psychological
markers.

AD state
As we can see clearly from Figure 4b, subtype #3 and
subtype #2 present distinct cognitive levels in almost
all domains. Subtype #3 has significantly higher scores
than (i) subtype #4 in six domains (Organ, Divatt, Viss-
pat, Mem, Lang, and Total), (ii) subtype #1 in domains
(Plan,Divatt,Visspat,Mem,Lang,and Total).Subtype #2
is significantly higher than (i) subtype #4 in Divatt, Mem,
Lang, Total, (ii) subtype #1 in Divatt, Mem, Lang, Total,
Plan, Visspat. This pattern also aligns with the predicted
AT[N] level generated by our spatiotemporal model (dis-
cussed in Section Neurobiological Evaluation). Based
on the consistency of pathological biomarkers and
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1198 AD SUBTYPE IDENTIFICATION

F IGURE 4 Clinical interpretation of stratification results. (a) Entropy comparison: ECog entropies across subtypes for K-means, SuStaIn,
and PSSN methods. (b) Distribution of ECog scores. Each ECog score is mapped into a specific domain based on the functional parcellation of
the human brain: temporal lobes regulate everyday memory (purple),42 Wernicke’s & Broca’s areas regulate language (orange),43 parietal and
occipital lobes regulate visuospatial abilities (deep periwinkle),44 ventrolateral frontal cortex regulates planning (green),45 frontal lobe regulates
organization (blue),46 and dorsolateral prefrontal cortex regulates divided attention (red).47 Each boxplot shows the distribution of
corresponding clinical assessments. The pairwise t-test is used to measure the difference between subtypes, and all pairs with <0.05 adjusted
p-values are displayed next to the boxplot. Note the subtype with a higher mean ECog score is listed on the left-hand side. (c) Relative stages of
six subtypes on AD spectrum based on ECog scores.

clinical scores, we consider subtypes #3 and #2 as AD
types, where high-level AT[N] accumulates across the
brain and multiple symptoms manifest together simulta-
neously. Although it is hard to differentiate subtypes #3
and #2 based on reported symptoms, we could observe
distinct patterns of pathological burdens Figure 5a.

CN state
Subtypes #1 and #4 are on the other end of the AD
spectrum as they have the lowest grades in almost all

domains. A closer look at the clinical scores reveals
that subtype #1 has particularly low scores on planning
and visuospatial abilities, implying low AT[N] accumu-
lations in the ventrolateral frontal cortex, parietal lobe,
and occipital lobe, which is further validated by the
subtypes’ phenotypes shown in Figure 5a. Subtype
#4 scores are significantly lower in memory, which
is also consistent with the brain mapping of AT[N]
biomarkers. A further examination shows that subtype
#4 has more problems with visual-spatial abilities,which
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AD SUBTYPE IDENTIFICATION 1199

F IGURE 5 Hypothetical subtype transition graph in AD progression. (a) The subtype conversion diagram was drawn upon the count of
subjects converting from one subtype to another. The probability of transition is labeled next to each arrow and indicated by the arrow width. The
inside rounded box shows the AT[N] burden of each subtype, where the lightness of color represents the level of AT[N] biomarker (red for A,
blue for T, green for [N]). Only transitions with probabilities >16% were plotted in the diagram. (b) Subtype brains with low, intermediate, and high
AT[N] values are mapped to CN-, MCI-, and AD-like states. We summarize possible CN/MCI/AD pathways based on starting and ending states.

F IGURE 6 Heatmaps of subtype transition matrix at different time steps (n). The number and shade in entry ith row and jth column
represent the probability of transiting from subtype #i to subtype #j at a given time.

suggests subtype-specific treatments in parietal and
occipital lobes and could be used in clinical settings to
differentiate subtypes #4 and #1.

MCI state
Subtypes #5 and #6 are intermediate states.Subtype #5
scores significantly higher on memory than subtype #4
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1200 AD SUBTYPE IDENTIFICATION

and on visual-spatial ability than subtype #1.Subtype #6
has higher scores in almost all cognitive domains than
subtypes #1 and #4, which implies subtype #6 should
be placed closer to the AD end on cognitive continu-
ums. Subtype #5 has close to normal organization and
language abilities, while subjects in subtype #6 tend to
score higher in planning, language abilities, and total
assessments. Such distinction suggests heavier patho-
logic burdens in Subtype #6′s Wernicke’s and Broca’s
areas, which is confirmed in Figure 5a.

4 DISCUSSIONS

Due to the massive heterogeneity between neurobi-
ological examination and clinical diagnosis, we are
interested in the associated neurobiological factors for
each identified subtype. We compute the subtype tran-
sition matrix, analyze the corresponding AT[N] pattern,
and generalize an AD evolutionary graph for subtype
prognosis.

Transition matrix
As defined above, each subject is labeled as st

m
which is the subtype index (from 1 to K = 6)
of subject m at visit t. Since subjects may tran-
sit from one subtype to another, we record the
occurrence of such transitions by ordered pairs
defined as Q = {qi| i = 1, … , K} = {(st

m, st+1
m ) |m =

1,… , M, t = 1,… , tm − 1}. Each qi represents all the
transition pairs starting in subtype #i. We then count
the frequency of ordered pairs and calculate the row
stochastic transition matrix Pr = [pri,j ] , i, j = 1, … , K,

where pri,j =
|{(st

m, st+1
m )|st

m=i, st+1
m =j}||qi | is the possibility of

subtype #i transiting to subtype #j.

AT[N] pattern
We check the topological patterns of average AT[N]
burden across brain networks to investigate the rela-
tionship with their clinical outcomes, indicated by AT[N]
pattern (Figure 5a) and subtype-typical clinical profiles
(Figure 4b). Consistent with normal cognitive functions
reflected by ECog scores, AT[N] burdens are the low-
est for subtype #4 except for parietal and occipital lobes,
which matches the jump in visuospatial scores. For sub-
type #1, only mild AT[N] burden is observed across the
brain. Despite relatively higher tau levels in the supe-
rior and inferior temporal gyrus, the neuron loss is not
noticeable in the temporal lobe, which could explain
subtype #1′s significantly better memory abilities. Close
attention should be paid to this cohort if they experi-
ence a sudden decline in memory. Subtype #5 resides
in the intermediate state of AD spectrum. Subtype #6
is also in the intermediate state but closer to AD state
with elevated tau and neurodegeneration level in tem-
poral lobes, which accords with ECog memory score.

Subtypes #2 and #3 are identified as AD state since
they have significantly higher whole-brain AT[N] levels
and clinical scores in all domains. Subtype #3 tends
to harbor more neurodegeneration in Wernicke’s area
than subtype #2, including angular gyrus and supra-
marginal gyrus that are in the parietal lobe.48 Thus,
subtype #3 is more susceptible to declined compre-
hension ability, leading to severe survival problems in
real-life situations.49

In Figure 5a, we connect each subtype-wise average
AT[N] pattern using the obtained transition matrix,where
thicker arrows represent high transition probability. Sub-
type #4 has the lowest AT[N] level in the prefrontal cortex
and has a 23.5% probability of converting to subtype
#1,which accumulates more pathological burdens in the
prefrontal cortex. Subtype #1 has a 16% probability of
converting to the intermediate state, subtype #5, and
then to subtype #6. These MCI states each has around
40% probability of developing into AD state, which is
marked by further increments of AT[N] accumulations
across the exocortex. Figure 5b summarizes hypothet-
ical CN, MCI, AD pathways, which are congruent with
the order of subtypes on the continuum in Figure 4c,
demonstrating the consistency between physiological
and psychological signs using our pathology steered
method. Clinicians should closely monitor their cogni-
tive abilities and provide prompt intervention if there is
a sudden deterioration.

Final stable state
For the subtype transition matrix Pr , each subtype can
be considered as a node in a graph, and the transition
probability indicates the directed link between two sub-
types.As the initial distribution of subtypes in our subject
pool is 𝜋(0) = {0.11, 0.11, 0.22, 0.38, 0.11, 0.08} and
𝜋(n) = 𝜋(0)Prn, we can get the steady state vector v
of the transition matrix by taking the infinite limit of
n, written as v = 𝜋(0) ⋅ lim

n→∞
Prn. Figure 6 shows the

transition matrix at different steps (n = 1, 3, 5) using
heatmaps, where darker colors represent higher tran-
sition probabilities. When n = 0, the heatmap is the
initial transition matrix.As we increase the exponent, the
matrix approaches the stable state vector v.We can cal-
culate v by solving Pr ⋅ v = v, which is the eigenvector
of the transition matrix corresponding to the eigenvalue
𝜆 = 1. More than 50% of subjects will progress to AD
states (subtypes #2 and #3),33% of subjects will stay in
MCI state (subtypes #5 and #6), and only 13% of sub-
jects will stay in cognitive normal states (subtypes #1
and #4).

5 CONCLUSIONS

In this paper, we propose a PSSN to fill the domain
knowledge gap in the current study of AD subtype
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AD SUBTYPE IDENTIFICATION 1201

identification. Our proposed method integrates (i) a
state-of -art reaction-diffusion model that can identify
causality and mechanisms underlying Alzheimer’s and
characterize the spatiotemporal dynamics of AT[N]
biomarkers across brain networks and (ii) a deep pre-
dictive neural network that can learn representative
features of neurodegeneration trajectories and strat-
ify the aging population into fine-grained subtypes with
distinct pathological profiles. Compared to other meth-
ods like K-means, our PSSN achieves the highest
inter-cluster heterogeneity and intra-cluster homogene-
ity. Importantly, we discovered six distinct subtypes
spread across the neurodegeneration spectrum, where
each subtype shows consistency between neurobio-
logical burden and symptom profiles, indicating the
potential of our PSSN to disentangle AD heterogene-
ity. An evolutionary disease graph is presented as a
general guideline for the probable state transition of
subtypes. Altogether, our method provides a systematic
way of subtype identification with joint consideration of
existing pathological knowledge, physiological imaging
data, and psychological examinations, which can assist
pre-clinical AD prognosis and may be applied to other
neurodegenerative studies facing similar therapeutic
challenges.
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